Synthesis, Structure and Properties of an Iron Complex with Formally Zero Oxidation State
- Corresponding author: Teng ZHANG, zhangteng@fjirsm.ac.cn
Citation: Lin-Jun ZHU, Tao HUANG, Teng ZHANG. Synthesis, Structure and Properties of an Iron Complex with Formally Zero Oxidation State[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220323. doi: 10.14102/j.cnki.0254-5861.2011-3339
Bedford, R. B. How low does iron go? Chasing the active species in Fe-catalyzed cross-coupling reactions. Acc. Chem. Res. 2015, 48, 1485–1493.
doi: 10.1021/acs.accounts.5b00042
Chirik, P. J. Iron- and cobalt-catalyzed alkene hydrogenation: catalysis with both redox-active and strong field ligands. Acc. Chem. Res. 2015, 48, 1687–1695.
doi: 10.1021/acs.accounts.5b00134
Chakraborty, S.; Bhattacharya, P.; Dai, H.; Guan, H. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds. Acc. Chem. Res. 2015, 48, 1995–2003.
doi: 10.1021/acs.accounts.5b00055
Zhang, L.; Peng, D.; Leng, X.; Huang, Z. Iron-catalyzed, atom-economical, chemo- and regioselective alkene hydroboration with pinacolborane. Angew. Chem. Int. Ed. 2013, 52, 3676–3680.
doi: 10.1002/anie.201210347
Bianchini, C.; Giambastiani, G.; Luconi, L.; Meli, A. Olefin oligomerization, homopolymerization and copolymerization by late transition metals supported by (imino)pyridine ligands. Coord. Chem. Rev. 2010, 254, 431–455.
doi: 10.1016/j.ccr.2009.07.013
Yamamoto, A.; Morifuji, K.; Ikeda, S.; Saito, T.; Uchida, Y.; Misono, A. Diethylbis(bipyridine)iron. Butadiene cyclodimerization catalyst. J. Am. Chem. Soc. 2002, 90, 1878–1883.
Sun, C. L.; Li, B. J.; Shi, Z. J. Direct C–H transformation via iron catalysis. Chem. Rev. 2011, 111, 1293–1314.
doi: 10.1021/cr100198w
Luo, Y.; Li, Y.; Yu, H.; Zhao, J. F.; Chen, Y. H.; Hou, Z. M.; Qu, J. P. DFT studies on the reduction of dinitrogen to ammonia by a thiolate-bridged diiron complex as a nitrogenase mimic. Organometallics 2012, 31, 335–344.
doi: 10.1021/om200950q
Bhutto, S. M.; Holland, P. L. Dinitrogen activation and functionalization using beta-diketiminate iron complexes. Eur. J. Inorg. Chem. 2019, 2019, 1861–1869.
doi: 10.1002/ejic.201900133
Figg, T. M.; Holland, P. L.; Cundari, T. R. Cooperativity between low-valent iron and potassium promoters in dinitrogen fixation. Inorg. Chem. 2012, 51, 7546–7550.
doi: 10.1021/ic300150u
Creutz, S. E.; Peters, J. C. Diiron bridged-thiolate complexes that bind N2 at the Fe(Ⅱ)Fe(Ⅱ), Fe(Ⅱ)Fe(Ⅰ), and Fe(Ⅰ)Fe(Ⅰ) redox states. J. Am. Chem. Soc. 2015, 137, 7310–7313.
doi: 10.1021/jacs.5b04738
Creutz, S. E.; Peters, J. C. Catalytic reduction of N2 to NH3 by an Fe-N2 complex featuring a C-atom anchor. J. Am. Chem. Soc. 2014, 136, 1105– 1115.
doi: 10.1021/ja4114962
Kaes, C.; Katz, A.; Hosseini, M. W. Bipyridine: the most widely used ligand. A review of molecules comprising at least two 2, 2'-bipyridine units. Chem. Rev. 2000, 100, 3553–3590.
doi: 10.1021/cr990376z
Werner, A. Beitrag zur konstitution anorganischer verbindungen. Z. Anorg. Allg. Chem. 1899, 19, 158–178.
doi: 10.1002/zaac.18990190114
Werner, A. Über spiegelbild-isomerie bei eisenverbindungen. Ber. Dtsch. Chem. Ges. 1912, 45, 433–436.
doi: 10.1002/cber.19120450165
Willett, B. C.; Anson, F. C. Electrochemistry and adsorption of bis 2, 2'-bipyridinecobalt(Ⅰ) and bis 6, 6'-dimethyl-2, 2'-bipyridinecobalt(Ⅰ) in acetonitrile. J. Electrochem. Soc. 1982, 129, 1260–1266.
doi: 10.1149/1.2124098
Groshens, T. G.; Henne, B.; Bartak, D.; Klabunde, K. J. Metal vapor synthesis, chemical oxidation, and electrochemistry of bis(bipyridyl)cobalt(0)-preparation of bromide, tetracyanoethylene, and tetracyanoquinodimethane salts. Inorg. Chem. 1981, 20, 3629–3635.
doi: 10.1021/ic50225a010
Kaizu, Y.; Yazaki, T.; Torii, Y.; Kobayash, H. Electronic absorption spectra of zero-valent tris-(2, 2'-bipyridine) metal complexes. Bull. Chem. Soc. Jpn. 1970, 43, 2068–2071.
doi: 10.1246/bcsj.43.2068
Motten, A. G.; Hanck, K.; DeArmound, M. K. ESR of the reduction products of [Fe(bpy)3]2+ and [Ru(bpy)3]2+. Chem. Phys. Lett. 1981, 79, 541– 546.
doi: 10.1016/0009-2614(81)85032-4
Richert, S. A.; Tsang, P. K. S.; Sawyer, D. T. Ligand-centered redox processes for manganese, iron and cobalt, MnL3, FeL3, and CoL3, complexes (L = acetylacetonate, 8-quinolinate, picolinate, 2, 2'-bipyridyl, 1, 10-phenanthroline) and for their tetrakis(2, 6-dichlorophenyl)porphinato complexes [M(Por)]. Inorg. Chem. 2002, 28, 2471–2475.
England, J.; Scarborough, C. C.; Weyhermüller, T.; Sproules, S.; Wieghardt, K. Electronic structures of the electron transfer series [M(bpy)3]n, [M(tpy)2]n, and [Fe(tbpy)3]n (M = Fe, Ru; n = 3+, 2+, 1+, 0, 1-): a mssbauer spectroscopic and DFT study. Eur. J. Inorg. Chem. 2012, 2012, 4605–4621.
doi: 10.1002/ejic.201200232
Hall, F. S.; Reynolds, W. L. Preparation of an iron(0) complex with 2, 2'-bipyridine. Inorg. Chem. 1966, 5, 931–932.
doi: 10.1021/ic50039a046
Herzog, S.; Klausch, U.; Lantos, J. Über die darstellung von tris-2, 2'-dipyridyl-kobalt(0) [CoDipy3]. Zeitschrift. für. Chemie. 2010, 4, 150–150.
Zhang, T.; Manna, K.; Lin, W. Metal-organic frameworks stabilize solution-inaccessible cobalt catalysts for highly efficient broad-scope organic transformations. J. Am. Chem. Soc. 2016, 138, 3241–3249.
doi: 10.1021/jacs.6b00849
Chan, B. C. K.; Baird, M. C. Reactions of 6, 6'-dimethyl-2, 2'-bipyridyl with iron(Ⅱ) in aqueous and non-aqueous media. Inorg. Chim. Acta 2004, 357, 2776–2782.
doi: 10.1016/j.ica.2004.02.002
Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122.
doi: 10.1107/S0108767307043930
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; A. Marenich, V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W; . Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Gaussian, Inc., Wallingford CT 2016.
Zhang, D.; Truhlar, D. G. Spin splitting energy of transition metals: a new, more affordable wave function benchmark method and its use to test density functional theory. J. Chem. Theory Comput. 2020, 16, 4416–4428.
doi: 10.1021/acs.jctc.0c00518
Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.
doi: 10.1002/jcc.22885
Addison, C. C.; Davis, R.; Logan, N. Reaction of dirhenium decacarbonyl with dinitrogen tetroxide. Nitratopentacarbonylrhenium (Ⅰ). Inorg. Chem. 1967, 6, 1926–1927.
doi: 10.1021/ic50056a040
Mulliken, R. S. Electronic population analysis on Lcao-Mo molecular wave functions. 1. J. Chem. Phys. 1955, 23, 1833–1840.
doi: 10.1063/1.1740588
Mulliken, R. S. Electronic population analysis on Lcao-Mo molecular wave functions. 2. overlap populations, bond orders, and covalent bond energies. J. Chem. Phys. 1955, 23, 1841–1846.
doi: 10.1063/1.1740589
Mulliken, R. S. Electronic population analysis on Lcao-Mo molecular wave functions. 3. effects of hybridization on overlap and gross ao populations. J. Chem. Phys. 1955, 23, 2338–2342.
doi: 10.1063/1.1741876
Nalewajski, R. F.; Parr, R. G. Information theory, atoms in molecules, and molecular similarity. Proc. Natl. Acad. Sci. USA. 2000, 97, 8879–8882.
doi: 10.1073/pnas.97.16.8879
Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge-densities. Theor. Chim. Acta 1977, 44, 129–138.
doi: 10.1007/BF00549096
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
Huan ZHANG , Jijiang WANG , Guang FAN , Long TANG , Erlin YUE , Chao BAI , Xiao WANG , Yuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
Shuyan ZHAO . Field-induced CoⅡ single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
Ziyi Liu , Xunying Liu , Lubing Qin , Haozheng Chen , Ruikai Li , Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
Wenhao Chen , Muxuan Wu , Han Chen , Lue Mo , Yirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698
Luyan Shi , Ke Zhu , Yuting Yang , Qinrui Liang , Qimin Peng , Shuqing Zhou , Tayirjan Taylor Isimjan , Xiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209