Citation: Lin-Jun ZHU, Tao HUANG, Teng ZHANG. Synthesis, Structure and Properties of an Iron Complex with Formally Zero Oxidation State[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220323. doi: 10.14102/j.cnki.0254-5861.2011-3339 shu

Synthesis, Structure and Properties of an Iron Complex with Formally Zero Oxidation State

  • Corresponding author: Teng ZHANG, zhangteng@fjirsm.ac.cn
  • Received Date: 25 August 2021
    Accepted Date: 8 October 2021

Figures(4)

  • An unusual iron complex with formally zero oxidation state, iron bis(6, 6΄-dimethyl-2, 2΄-bipyridine), was synthesized and its crystal structure was determined. Combination of experimental and theoretical studies reveals that the electronic structure of the complex is best described as Fe(Ⅱ)(Mebipy-)2 with anionic Mebipy- ligands and high-spin Fe(Ⅱ) center.
  • 加载中
    1. [1]

      Bedford, R. B. How low does iron go? Chasing the active species in Fe-catalyzed cross-coupling reactions. Acc. Chem. Res. 2015, 48, 1485–1493.  doi: 10.1021/acs.accounts.5b00042

    2. [2]

      Chirik, P. J. Iron- and cobalt-catalyzed alkene hydrogenation: catalysis with both redox-active and strong field ligands. Acc. Chem. Res. 2015, 48, 1687–1695.  doi: 10.1021/acs.accounts.5b00134

    3. [3]

      Chakraborty, S.; Bhattacharya, P.; Dai, H.; Guan, H. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds. Acc. Chem. Res. 2015, 48, 1995–2003.  doi: 10.1021/acs.accounts.5b00055

    4. [4]

      Zhang, L.; Peng, D.; Leng, X.; Huang, Z. Iron-catalyzed, atom-economical, chemo- and regioselective alkene hydroboration with pinacolborane. Angew. Chem. Int. Ed. 2013, 52, 3676–3680.  doi: 10.1002/anie.201210347

    5. [5]

      Bianchini, C.; Giambastiani, G.; Luconi, L.; Meli, A. Olefin oligomerization, homopolymerization and copolymerization by late transition metals supported by (imino)pyridine ligands. Coord. Chem. Rev. 2010, 254, 431–455.  doi: 10.1016/j.ccr.2009.07.013

    6. [6]

      Yamamoto, A.; Morifuji, K.; Ikeda, S.; Saito, T.; Uchida, Y.; Misono, A. Diethylbis(bipyridine)iron. Butadiene cyclodimerization catalyst. J. Am. Chem. Soc. 2002, 90, 1878–1883.

    7. [7]

      Sun, C. L.; Li, B. J.; Shi, Z. J. Direct C–H transformation via iron catalysis. Chem. Rev. 2011, 111, 1293–1314.  doi: 10.1021/cr100198w

    8. [8]

      Luo, Y.; Li, Y.; Yu, H.; Zhao, J. F.; Chen, Y. H.; Hou, Z. M.; Qu, J. P. DFT studies on the reduction of dinitrogen to ammonia by a thiolate-bridged diiron complex as a nitrogenase mimic. Organometallics 2012, 31, 335–344.  doi: 10.1021/om200950q

    9. [9]

      Bhutto, S. M.; Holland, P. L. Dinitrogen activation and functionalization using beta-diketiminate iron complexes. Eur. J. Inorg. Chem. 2019, 2019, 1861–1869.  doi: 10.1002/ejic.201900133

    10. [10]

      Figg, T. M.; Holland, P. L.; Cundari, T. R. Cooperativity between low-valent iron and potassium promoters in dinitrogen fixation. Inorg. Chem. 2012, 51, 7546–7550.  doi: 10.1021/ic300150u

    11. [11]

      Creutz, S. E.; Peters, J. C. Diiron bridged-thiolate complexes that bind N2 at the Fe(Ⅱ)Fe(Ⅱ), Fe(Ⅱ)Fe(Ⅰ), and Fe(Ⅰ)Fe(Ⅰ) redox states. J. Am. Chem. Soc. 2015, 137, 7310–7313.  doi: 10.1021/jacs.5b04738

    12. [12]

      Creutz, S. E.; Peters, J. C. Catalytic reduction of N2 to NH3 by an Fe-N2 complex featuring a C-atom anchor. J. Am. Chem. Soc. 2014, 136, 1105– 1115.  doi: 10.1021/ja4114962

    13. [13]

      Kaes, C.; Katz, A.; Hosseini, M. W. Bipyridine: the most widely used ligand. A review of molecules comprising at least two 2, 2'-bipyridine units. Chem. Rev. 2000, 100, 3553–3590.  doi: 10.1021/cr990376z

    14. [14]

      Werner, A. Beitrag zur konstitution anorganischer verbindungen. Z. Anorg. Allg. Chem. 1899, 19, 158–178.  doi: 10.1002/zaac.18990190114

    15. [15]

      Werner, A. Über spiegelbild-isomerie bei eisenverbindungen. Ber. Dtsch. Chem. Ges. 1912, 45, 433–436.  doi: 10.1002/cber.19120450165

    16. [16]

      Willett, B. C.; Anson, F. C. Electrochemistry and adsorption of bis 2, 2'-bipyridinecobalt(Ⅰ) and bis 6, 6'-dimethyl-2, 2'-bipyridinecobalt(Ⅰ) in acetonitrile. J. Electrochem. Soc. 1982, 129, 1260–1266.  doi: 10.1149/1.2124098

    17. [17]

      Groshens, T. G.; Henne, B.; Bartak, D.; Klabunde, K. J. Metal vapor synthesis, chemical oxidation, and electrochemistry of bis(bipyridyl)cobalt(0)-preparation of bromide, tetracyanoethylene, and tetracyanoquinodimethane salts. Inorg. Chem. 1981, 20, 3629–3635.  doi: 10.1021/ic50225a010

    18. [18]

      Kaizu, Y.; Yazaki, T.; Torii, Y.; Kobayash, H. Electronic absorption spectra of zero-valent tris-(2, 2'-bipyridine) metal complexes. Bull. Chem. Soc. Jpn. 1970, 43, 2068–2071.  doi: 10.1246/bcsj.43.2068

    19. [19]

      Motten, A. G.; Hanck, K.; DeArmound, M. K. ESR of the reduction products of [Fe(bpy)3]2+ and [Ru(bpy)3]2+. Chem. Phys. Lett. 1981, 79, 541– 546.  doi: 10.1016/0009-2614(81)85032-4

    20. [20]

      Richert, S. A.; Tsang, P. K. S.; Sawyer, D. T. Ligand-centered redox processes for manganese, iron and cobalt, MnL3, FeL3, and CoL3, complexes (L = acetylacetonate, 8-quinolinate, picolinate, 2, 2'-bipyridyl, 1, 10-phenanthroline) and for their tetrakis(2, 6-dichlorophenyl)porphinato complexes [M(Por)]. Inorg. Chem. 2002, 28, 2471–2475.

    21. [21]

      England, J.; Scarborough, C. C.; Weyhermüller, T.; Sproules, S.; Wieghardt, K. Electronic structures of the electron transfer series [M(bpy)3]n, [M(tpy)2]n, and [Fe(tbpy)3]n (M = Fe, Ru; n = 3+, 2+, 1+, 0, 1-): a mssbauer spectroscopic and DFT study. Eur. J. Inorg. Chem. 2012, 2012, 4605–4621.  doi: 10.1002/ejic.201200232

    22. [22]

      Hall, F. S.; Reynolds, W. L. Preparation of an iron(0) complex with 2, 2'-bipyridine. Inorg. Chem. 1966, 5, 931–932.  doi: 10.1021/ic50039a046

    23. [23]

      Herzog, S.; Klausch, U.; Lantos, J. Über die darstellung von tris-2, 2'-dipyridyl-kobalt(0) [CoDipy3]. Zeitschrift. für. Chemie. 2010, 4, 150–150.

    24. [24]

      Zhang, T.; Manna, K.; Lin, W. Metal-organic frameworks stabilize solution-inaccessible cobalt catalysts for highly efficient broad-scope organic transformations. J. Am. Chem. Soc. 2016, 138, 3241–3249.  doi: 10.1021/jacs.6b00849

    25. [25]

      Chan, B. C. K.; Baird, M. C. Reactions of 6, 6'-dimethyl-2, 2'-bipyridyl with iron(Ⅱ) in aqueous and non-aqueous media. Inorg. Chim. Acta 2004, 357, 2776–2782.  doi: 10.1016/j.ica.2004.02.002

    26. [26]

      Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122.  doi: 10.1107/S0108767307043930

    27. [27]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; A. Marenich, V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W; . Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Gaussian, Inc., Wallingford CT 2016.

    28. [28]

      Zhang, D.; Truhlar, D. G. Spin splitting energy of transition metals: a new, more affordable wave function benchmark method and its use to test density functional theory. J. Chem. Theory Comput. 2020, 16, 4416–4428.  doi: 10.1021/acs.jctc.0c00518

    29. [29]

      Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.  doi: 10.1002/jcc.22885

    30. [30]

      Addison, C. C.; Davis, R.; Logan, N. Reaction of dirhenium decacarbonyl with dinitrogen tetroxide. Nitratopentacarbonylrhenium (Ⅰ). Inorg. Chem. 1967, 6, 1926–1927.  doi: 10.1021/ic50056a040

    31. [31]

      Mulliken, R. S. Electronic population analysis on Lcao-Mo molecular wave functions. 1. J. Chem. Phys. 1955, 23, 1833–1840.  doi: 10.1063/1.1740588

    32. [32]

      Mulliken, R. S. Electronic population analysis on Lcao-Mo molecular wave functions. 2. overlap populations, bond orders, and covalent bond energies. J. Chem. Phys. 1955, 23, 1841–1846.  doi: 10.1063/1.1740589

    33. [33]

      Mulliken, R. S. Electronic population analysis on Lcao-Mo molecular wave functions. 3. effects of hybridization on overlap and gross ao populations. J. Chem. Phys. 1955, 23, 2338–2342.  doi: 10.1063/1.1741876

    34. [34]

      Nalewajski, R. F.; Parr, R. G. Information theory, atoms in molecules, and molecular similarity. Proc. Natl. Acad. Sci. USA. 2000, 97, 8879–8882.  doi: 10.1073/pnas.97.16.8879

    35. [35]

      Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge-densities. Theor. Chim. Acta 1977, 44, 129–138.  doi: 10.1007/BF00549096

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    3. [3]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    4. [4]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    5. [5]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    6. [6]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    7. [7]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    8. [8]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    9. [9]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    10. [10]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    15. [15]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    16. [16]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    17. [17]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    18. [18]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

Metrics
  • PDF Downloads(2)
  • Abstract views(412)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return