Citation: Bo JIN, Jian-Hong BIAN, Xue-Feng ZHAO, Cai-Xia YUAN, Jin-Chang GUO, Yan-Bo WU. Planar Tetracoordinate Carbon in 6σ + 2π Double Aromatic CBe42– Derivatives[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220321. doi: 10.14102/j.cnki.0254-5861.2011-3332 shu

Planar Tetracoordinate Carbon in 6σ + 2π Double Aromatic CBe42– Derivatives

  • Corresponding author: Yan-Bo WU, wyb@sxu.edu.cn
  • Received Date: 14 August 2021
    Accepted Date: 21 October 2021

    Fund Project: the National Natural Science Foundation of China 21720102006the National Natural Science Foundation of China 22073058the National Natural Science Foundation of China 21973055the Natural Science Foundation of Shanxi Province 201901D111018the Natural Science Foundation of Shanxi Province 201901D111014the Shanxi"1331 Project" Engineering Research Center PT201807

Figures(7)

  • As a typical electron deficient element, beryllium is potentially suitable for designing the species with novel non-classical planar hypercoordinate carbon due to high preference for the planar structures by small beryllium-containing clusters. In particular, the CBe54– cluster with a planar pentacoordinate carbon (ppC) had been proved by many previous studies to be an excellent template structure for the systematic design of ppC species through attaching various monovalent atoms on the bridging position of Be–Be edges. In this work, based on the analysis and extension on our recently reported CBe4Mnn–2 (M = Li, Au, n = 1~3) species, we propose that ptC cluster CBe42– is similar to CBe54– in that it can also be employed as a template structure to systematically design the ptC species through binding various monovalent atoms on the bridging position of Be–Be edges. Our extensive screening suggests that the feasible bridging atoms (E) can be found in group 1 (H, Li, Na), group 11 (Cu, Ag, Au), and group 17 (F, Cl, Br, I) elements, leading to total thirty eligible ptC species with CBe4 core moiety (CBe4Enn–2). The ptC atoms in these species are involved into three delocalized σ bonds and a delocalized π bond, thereby not only obeying the octet rule, but also possessing novel 6σ +2π double aromaticity, which significantly stabilizes the ptC arrangement. In addition, the attached bridging atoms can stabilize the CBe4 core ptC moiety by replacing the highly diffused Be–Be two-center two-electron bonds with the much less diffused Be–E two-center two-electron bonds or Be–E–Be three-center two-electron bonds, as reflected by the increasing HOMO-LUMO gaps when the number of bridging atoms increases. Remarkably, the stochastic search algorithm in combination with high level CCSD(T) calculations revealed that twenty-six of the thirty-one ptC species (including previously reported six species) were global energy minima on their corresponding potential energy surfaces, in which twenty-five of them were also confirmed to be dynamically viable. They are suitable for the generation and characterization in gas phase experiments and followed spectroscopic studies.
  • 加载中
    1. [1]

      Wang, Z. X.; Zhang, C. G.; Chen, Z.; Schleyer, P. V. R. Planar tetracoordinate carbon species involving beryllium substituents. Inorg. Chem. 2008, 47, 1332‒1336.  doi: 10.1021/ic7017709

    2. [2]

      Wu, Y. B.; Jiang, J. L.; Zhang, R. W.; Wang, Z. X. Computationally designed families of flat, tubular, and cage molecules assembled with "starbenzene" building blocks through hydrogen-bridge Bonds. Chem. -Eur. J. 2010, 16, 1271‒1280.  doi: 10.1002/chem.200901983

    3. [3]

      Zhao, X. F.; Li, H.; Yuan, C. X.; Li, Y. Q.; Wu, Y. B.; Wang, Z. X. Linear, planar, and tubular molecular structures constructed by double planar tetracoordinate carbon D2h C2(BeH)4 species via hydrogen-bridged -BeH2Be-bonds. J. Comput. Chem. 2016, 37, 261‒269.  doi: 10.1002/jcc.24018

    4. [4]

      Guo, J. C.; Feng, L. Y.; Dong, C.; Zhai, H. J. Planar pentacoordinate versus tetracoordinate carbons in ternary CBe4Li4 and CBe4Li42− clusters. J. Phys. Chem. A 2018, 122, 8370‒8376.  doi: 10.1021/acs.jpca.8b08573

    5. [5]

      Guo, J. C.; Feng, L. Y.; Dong, C.; Zhai, H. J. Ternary 12-electron CBe3X3+ (X = H, Li, Na, Cu, Ag) clusters: planar tetracoordinate carbons and superalkali cations. Phys. Chem. Chem. Phys. 2019, 21, 22048‒22056.  doi: 10.1039/C9CP04437J

    6. [6]

      Guo, J. C.; Feng, L. Y.; Zhai, H. J. Ternary CBe4Au4 cluster: a 16-electron system with quasi-planar tetracoordinate carbon. Phys. Chem. Chem. Phys. 2018, 20, 6299‒6306.  doi: 10.1039/C7CP08420J

    7. [7]

      Jimenez Halla, J. O. C.; Wu, Y. B.; Wang, Z. X.; Islas, R.; Heine, T.; Merino, G. CAl4Be and CAl3Be2: global minima with a planar pentacoordinate carbon atom. Chem. Commun. 2010, 46, 8776‒8778.  doi: 10.1039/c0cc03479g

    8. [8]

      Wu, Y. B.; Duan, Y.; Lu, H. G.; Li, S. D. CAl2Be32− and its salt complex LiCAl2Be3: anionic global minima with planar pentacoordinate carbon. J. Phys. Chem. A 2012, 116, 3290‒3294.  doi: 10.1021/jp300302w

    9. [9]

      Zhao, X. F.; Bian, J. H.; Huang, F.; Yuan, C.; Wang, Q.; Liu, P.; Li, D.; Wang, X.; Wu, Y. B. Stabilization of beryllium-containing planar pentacoordinate carbon species through attaching hydrogen atoms. RSC Adv. 2018, 8, 36521‒36526.  doi: 10.1039/C8RA07664B

    10. [10]

      Castro, A. C.; Martinez Guajardo, G.; Johnson, T.; Ugalde, J. M.; Wu, Y. B.; Mercero, J. M.; Heine, T.; Donald, K. J.; Merino, G. CBe5E (E = Al, Ga, In, Tl): planar pentacoordinate carbon in heptaatomic clusters. Phys. Chem. Chem. Phys. 2012, 14, 14764‒14768.  doi: 10.1039/c2cp40839b

    11. [11]

      Luo, Q. Theoretical observation of hexaatomic molecules containing pentacoordinate planar carbon. Sci. China Ser. B 2008, 51, 1030‒1035.  doi: 10.1007/s11426-008-0121-5

    12. [12]

      Grande Aztatzi, R.; Cabellos, J. L.; Islas, R.; Infante, I.; Mercero, J. M.; Restrepo, A.; Merino, G. Planar pentacoordinate carbons in CBe54− derivatives. Phys. Chem. Chem. Phys. 2015, 17, 4620‒4624.  doi: 10.1039/C4CP05659K

    13. [13]

      Guo, J. C.; Feng, L. Y.; Barroso, J.; Merino, G.; Zhai, H. J. Planar or tetrahedral? A ternary 17-electron CBe5H4+ cluster with planar pentacoordinate carbon. Chem. Commun. 2020, 56, 8305‒8308.  doi: 10.1039/D0CC02973D

    14. [14]

      Guo, J. C.; Ren, G. M.; Miao, C. Q.; Tian, W. J.; Wu, Y. B.; Wang, X. CBe5Hnn−4 (n = 2~5): hydrogen-stabilized CBe5 pentagons containing planar or quasi-planar pentacoordinate carbons. J. Phys. Chem. A 2015, 119, 13101‒13106.  doi: 10.1021/acs.jpca.5b10178

    15. [15]

      Guo, J. C.; Tian, W. J.; Wang, Y. J.; Zhao, X. F.; Wu, Y. B.; Zhai, H. J.; Li, S. D. Star-like superalkali cations featuring planar pentacoordinate carbon. J. Chem. Phys. 2016, 144. 244303‒9.

    16. [16]

      Wu, Y. B.; Duan, Y.; Lu, G.; Lu, H. G.; Yang, P.; Schleyer, P. V. R.; Merino, G.; Islas, R.; Wang, Z. X. D3h CN3Be3+ and CO3Li3+: viable planar hexacoordinate carbonprototypes. Phys. Chem. Chem. Phys. 2012, 14, 14760–14763.  doi: 10.1039/c2cp41822c

    17. [17]

      Zhao, X. F.; Li, J. J.; Li, H. R.; Yuan, C.; Tian, X.; Li, S. D.; Wu, Y. B.; Guo, J. C.; Wang, Z. X. Viable aromatic BenHn stars enclosing a planar hypercoordinate boron or late transition metal. Phys. Chem. Chem. Phys. 2018, 20, 7217‒7222.  doi: 10.1039/C7CP06955C

    18. [18]

      Xiao, B.; Cheng, J. B.; Liu, Z. B.; Li, Q. Z.; Li, W. Z.; Yang, X.; Yu, X. F. Beryllium decorated armchair BC2N nanoribbons: coexistence of planar tetracoordinate carbon and nitrogen moieties. RSC Adv. 2015, 5, 73945‒73950.  doi: 10.1039/C5RA12660F

    19. [19]

      Li, J. J.; Mu, Y.; Tian, X.; Yuan, C.; Wu, Y. B.; Wang, Q.; Li, D.; Wang, Z. X.; Li, S. D. Zigzag double-chain C‒Be nanoribbon featuring planar pentacoordinate carbons and ribbon aromaticity. J. Mater. Chem. C 2017, 5, 408‒414.  doi: 10.1039/C6TC04356A

    20. [20]

      Wang, Y.; Li, F.; Li, Y.; Chen, Z. Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson's ratio. Nat. Commun. 2016, 7, 11488.  doi: 10.1038/ncomms11488

    21. [21]

      Li, Y.; Liao, Y.; Chen, Z. Be2C Monolayer with quasi-planar hexacoordinate carbons: a global minimum structure. Angew. Chem. Int. Ed. 2014, 53, 7248‒7252.  doi: 10.1002/anie.201403833

    22. [22]

      Li, X. S.; Millam, J. M.; Schlegel, H. B. Ab initio molecular dynamics studies of the photodissociation of formaldehyde, H2CO → H2 + CO: direct classical trajectory calculations by MP2 and density functional theory. J. Chem. Phys. 2000, 113, 10062‒10067.  doi: 10.1063/1.1323503

    23. [23]

      Millam, J. M.; Bakken, V.; Chen, W.; Hase, W. L.; Schlegel, H. B. Ab initio classical trajectories on the Born-Oppenheimer surface: Hessian-based integrators using fifth-order polynomial and rational function fits. J. Chem. Phys. 1999, 111, 3800‒3805.  doi: 10.1063/1.480037

    24. [24]

      Schleyer, P. V. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. E. Nucleus-independent chemical shifts: a simple and efficient aromatic-city probe. J. Am. Chem. Soc. 1996, 118, 6317−6318.  doi: 10.1021/ja960582d

    25. [25]

      Schleyer, P. V. R.; Jiao, H.; Hommes, N. J. R. E.; Malkin, V. G.; Malkina, O. L. An evaluation of the aromaticity of inorganic rings: refined evidence from magnetic properties. J. Am. Chem. Soc. 1997, 119, 12669−12670.  doi: 10.1021/ja9719135

    26. [26]

      Corminboeuf, C.; Heine, T.; Seifert, G.; von Rague Schleyer, P. V. R.; Weber, J. Induced magnetic fields in aromatic [n]-annulenes-interpretation of NICS tensor components. Phys. Chem. Chem. Phys. 2004, 6, 273−276.  doi: 10.1039/B313383B

    27. [27]

      Zubarev, D. Y.; Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 2008, 10, 5207‒5217.  doi: 10.1039/b804083d

    28. [28]

      Zubarev, D. Y.; Boldyrev, A. I. Revealing intuitively assessable chemical bonding patterns in organic aromatic molecules via adaptive natural density partitioning. J. Org. Chem. 2008, 73, 9251‒9258.  doi: 10.1021/jo801407e

    29. [29]

      Bera, P. P.; Sattelmeyer, K. W.; Saunders, M.; Schaefer, H. F.; Schleyer, P. V. R. Mindless chemistry. J. Phys Chem. A 2006, 110, 4287‒4290.  doi: 10.1021/jp057107z

    30. [30]

      Saunders, M. J. Stochastic search for isomers on a quantum mechanical surface. Comput. Chem. 2004, 25, 621‒626.  doi: 10.1002/jcc.10407

    31. [31]

      Wu, Y. B.; Lu, H. G.; Li, S. D.; Wang, Z. X. J. Simplest neutral singlet C2E4 (E = Al, Ga, In, and Tl) global minima with double planar tetracoordinate carbons: equivalence of C2 Moieties in C2E4 to carbon centers in CAl42− and CAl5+. Phys. Chem. A 2009, 113, 3395‒3402.  doi: 10.1021/jp8099187

    32. [32]

      Lu, H. G., Wu, Y. B. in GXYZ 2.0, A Random Search Program. Shanxi University: Taiyuan 2015.

    33. [33]

      Werner, H. J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. MolPro 2012.1. University College Cardiff Consultants Limited: Cardiff UK 2012.

    34. [34]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision A. 03. Gaussian, Inc., Wallingford CT 2016.

    35. [35]

      Guo, J. C.; Feng, L. Y.; Zhai, H. J. Planar tetracoordinate carbon molecules with 14 valence electrons: examples of CBe4Mnn−2 (M = Li, Au; n = 1~3) clusters. New J. Chem. 2020, 44, 18293.  doi: 10.1039/D0NJ03944F

    36. [36]

      Pyykkö, P. Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. J. Phys. Chem. A 2015, 119, 2326‒2337.  doi: 10.1021/jp5065819

    37. [37]

      Yuan, C.; Zhao, X. F.; Wu, Y. B.; Wang, X. Ultrashort beryllium-beryllium distances rivalling those of metal-metal quintuple bonds between transition metals. Angew. Chem. Int. Ed. 2016, 55, 15651‒15655.  doi: 10.1002/anie.201609455

    38. [38]

      Zhao, X. F.; Yuan, C.; Li, S. D.; Wu, Y. B.; Wang, X. Simulating the effect of a triple bond to achieve the shortest main group metal-metal distance in diberyllium complexes: a computational study. Dalton Trans. 2018, 47, 14462‒14467.  doi: 10.1039/C8DT02683A

    39. [39]

      Wagner, F. R.; Noor, A.; Kempe, R. Ultrashort metal-metal distances and extreme bond orders. Nat. Chem. 2009, 1, 529‒536.  doi: 10.1038/nchem.359

  • 加载中
    1. [1]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    2. [2]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    3. [3]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    4. [4]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    5. [5]

      Shicheng DongJun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214

    6. [6]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    7. [7]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    8. [8]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    9. [9]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    10. [10]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    11. [11]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    12. [12]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    13. [13]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    14. [14]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    15. [15]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    16. [16]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    17. [17]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    18. [18]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    19. [19]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    20. [20]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

Metrics
  • PDF Downloads(4)
  • Abstract views(398)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return