Citation: Hong-Mei GUO, Na YU, Le FU, Guang-Ping LI, Mao SHU, Zhi-Hua LIN. Discovery of Benzimidazole Derivatives as Novel Aldosterone Synthase Inhibitors: QSAR, Docking Studies, and Molecular Dynamics Simulation[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220319. doi: 10.14102/j.cnki.0254-5861.2011-3321 shu

Discovery of Benzimidazole Derivatives as Novel Aldosterone Synthase Inhibitors: QSAR, Docking Studies, and Molecular Dynamics Simulation

  • Corresponding author: Mao SHU, maoshu@cqut.edu.cn Zhi-Hua LIN, zhlin@cqit.edu.cn
  • Received Date: 2 August 2021
    Accepted Date: 15 October 2021

    Fund Project: the graduate student innovation project of Chongqing University of Technology clgycx 20202129

Figures(15)

  • Aldosterone synthase inhibitors can lessen the production of aldosterone in organisms, which effectively affecting the treatment of hypertension. A series of computational approaches like QSAR, docking, DFT and molecular dynamics simulation are applied on 40 benzimidazole derivatives of aldosterone synthase (CYP11B2) inhibitors. Statistical parameters: Q2 = 0.877, R2 = 0.983 (CoMFA) and Q2 = 0.848, R2 = 0.994 (CoMSIA) indicate on good predictive power of both models and DFT's result illustrates the stability of both models. Besides, Y-randomization test is also performed to ensure the robustness of the obtained 3D-QSAR models. Docking studies show inhibitors rely on π-π interaction with residues, such as Phe130, Ala313 and Phe481. Molecular dynamics simulation results further confirm that the hydrophobic interaction with proteins enhances the inhibitor's inhibitory effect. Based on QSAR studies and molecular docking, we designed novel compounds with enhanced activity against aldosterone synthase. Furthermore, the newly designed compounds are analyzed for their ADMET properties and drug likeness and the results show that they all have excellent bioavailability.
  • 加载中
    1. [1]

      Majid, N.; Kemal, P. Automatic classification of hypertension types based on personal features by machine learning algorithms. Math. Probl. Eng. 2020, 28, 1-13.

    2. [2]

      Mills, K. T.; Bundy, J. D.; Kelly, T. N.; Reed, J. E.; Kearney, P. M.; Reynolds, K.; Chen, J.; He, J. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 2016, 6, 441-450.

    3. [3]

      Zhou, B.; Bentham, J.; Di, C. M.; Bixby, H.; Danaei, G.; Cowan, M. J.; Paciorek, C. J.; Singh, G.; Hajifathalian, K.; Bennett, J. E.; Taddei, C.; Bilano, V.; Carrillo-Larco, R. M.; Djalalinia, S.; Khatibzadeh, S.; Lugero, C.; Peykari, N.; Zhang, W. Z.; Lu, Y.; Stevens, G. A.; Riley, L. M.; Bovet, P.; Elliott, P.; Gu, D. F.; Ikeda, N.; Jackson, R. T.; Joffres, M.; Kengne, A. P.; Laatikainen, T.; Lam, T. H.; Laxmaiah, A.; Liu, J.; Miranda, J. J.; Mondo, C. K.; Neuhauser, H. K.; Sundstrom, J.; Smeeth, L.; Soric, M.; Woodward, M.; Ezzati, M. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet 2017, 10064, 37-55.

    4. [4]

      Ryo, S.; Wataru, S.; Yuichi, O.; Minami, Y.; Hideki, U.; Yuki, H.; Kanako, S.; Masashi, N.; Yasuhiro, E.; Kei, T.; Hidetoshi, S.; Tomoko, O.; Fumihiko, A. Discovery of novel pyrazole-based selective aldosterone synthase (CYP11B2) inhibitors: a new template to coordinate the heme-iron motif of CYP11B2. J. Med. Chem. 2018, 13, 5594-5608.

    5. [5]

      Tomaschitz, A.; Pilz, S.; Ritz, E.; Obermayer-Pietsch, B.; Pieber, T. R. Aldosterone and arterial hypertension. Nat. Rev. Endocrinol. 2009, 2, 83-93.

    6. [6]

      Palo, K.; Barone, N. J. Hypertension and heart failure: prevention, targets, and treatment. Heart. Fail. Clin. 2020, 1, 99-106.

    7. [7]

      Lehmann, L. H.; Jebessa, Z. H.; Kreusser, M. M.; Horsch, A.; He, T.; Kronlage, M. A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway. Nat. Med. 2017, 1, 62-72.

    8. [8]

      Petrea, R. E.; O'Donnell, A.; Beiser, A. S.; Habes, M.; Romero, J. R. Mid to late life hypertension trends and cerebral small vessel disease in the framingham heart study. Hypertension 2020, 3, 707-714.

    9. [9]

      Struthers, A. D.; Macdonald, T. M. Review of aldosterone-and angiotensin ii-induced target organ damage and prevention. Cardiovasc. Res. 2004, 4, 663-670.

    10. [10]

      Yang, T.; Chen, Y. Y.; Liu, J. R.; Zhao, H.; Zhao, Y. Y. Natural products against renin-angiotensin system for antifibrosis therapy. Eur. J. Med. Chem. 2019, 179, 623-633.  doi: 10.1016/j.ejmech.2019.06.091

    11. [11]

      Flynn, J. T.; Kaelber, D. C.; Baker-Smith, C. M.; Blowey, D.; Carroll, A. E.; Daniels, S. R.; Ferranti, S. D.; Dionne, J. M.; Falkner, B.; Flinn, Susan K.; Gidding, S. S.; Goodwin, C.; Leu, M. G.; Powers, M. E.; Rea, C.; Samuels, J.; Simasek, M.; Thaker, V. V.; Urbina, E. M. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics 2017, 3, e20171904-e20171978.

    12. [12]

      Papillon, J.; Lou, C.; Singh, A. K.; Adams, C. M.; Watson, C. Discovery of n-[5-(6-chloro-3-cyano-1-methyl-1h-indol-2-yl)-pyridin-3-ylmethyl]-ethanesulfonamide, a cortisol-sparing CYP11B2 inhibitor that lowers aldosterone in human subjects. J. Med. Chem. 2015, 23, 9382-9394.

    13. [13]

      Wang, J. G.; Li, Y. Characteristics of hypertension in Chinese and their relevance for the choice of antihypertensive drugs. Diabetes 2013, s2, 67-72.

    14. [14]

      Ito, R.; Sato, I.; Tsujita, T.; Yokoyama, A.; Sugawara, A. An ubiquitin-proteasome inhibitor bortezomib suppresses the expression of CYP11B2, a key enzyme of aldosterone synthesis. Biochem. Biophys. Res. Commun. 2017, 1, 21-28.

    15. [15]

      Cui, C. X.; Chen, H.; Li, S. J.; Zhang, T.; Lan, Y. Mechanism of ir-catalyzed hydrogenation: a theoretical view. Coord. Chem. Rev. 2020, 412, 213251-213272.  doi: 10.1016/j.ccr.2020.213251

    16. [16]

      Ban, F.; Dalal, K.; Li, H.; Leblanc, E.; Rennie, P. S.; Cherkasov, A. Best practices of computer-aided drug discovery: lessons learned from the development of a preclinical candidate for prostate cancer with a new mechanism of action. J. Chem. Inf. Model. 2017, 5, 1018-1028.

    17. [17]

      Kholod, Y.; Hoag, E.; Muratore, K.; Kosenkov, D. Computer-aided drug discovery: molecular docking of diminazene ligands to DNA minor groove. J. Med. Chem. 2018, 5, 882-887.

    18. [18]

      Shekhar, C. In silico pharmacology: computer-aided methods could transform drug development. Chem. Biol. 2008, 5, 413-414.

    19. [19]

      Tantillo, D. J.; Siegel, J. B.; Saunders, C. M.; Palazzo, T. A.; Painter, P. P.; Brien, T. E.; Nuñez, N. N.; Nouri, D. H.; Lodewyk, M. W.; Hudson, B. M.; Hare, S. R.; Davis, R. L. Computer-aided drug design for undergraduates. J. Chem. Educ. 2019, 5, 920-925.

    20. [20]

      Morales, B. A.; Matute, R. A.; Caballero, J. Understanding the comparative molecular field analysis (CoMFA) in terms of molecular quantum similarity and DFT-based reactivity descriptors. J. Mol. Model. 2015, 6, 156-166.

    21. [21]

      Zhang, C.; Feng, L. J.; Huang, Y.; Wu, D.; Li, Z.; Zhou, Q.; Wu, Y.; Luo, H. B. Discovery of novel phosphodiesterase-2a inhibitors by structure-based virtual screening, structural optimization, and bioassay. J. Chem. Inf. Model. 2017, 2, 355-364.

    22. [22]

      Hoyt, S. B.; Park, M. K.; London, C.; Xiong, Y.; Ali, A. Discovery of benzimidazole CYP11B2 inhibitors with in vivo activity in rhesus monkeys. ACS. Med. Chem. Lett. 2015, 5, 573-578.

    23. [23]

      Sparks, S. M.; Danger, D. P.; Hoekstra, W. J.; Leesnitzer, T.; Becherer, J. D. Development of highly selective pyrimidine-based aldosterone synthase (CYP11B2) inhibitors. ACS. Med. Chem. Lett. 2019, 7, 1056-1060.

    24. [24]

      Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 1996, 3, 470-489.

    25. [25]

      Muthiah, I.; Rajendran, K.; Dhanaraj, P. In silico molecular docking and physicochemical property studies on effective phytochemicals targeting GPR116 for breast cancer treatment. Mol. Cell. Biochem. 2021, 476, 883-896.

    26. [26]

      Clark, M.; Iii, R.; Opdenbosch, N. V. Validation of the general purpose tripos 5.2 force field. J. Comput. Chem. 2010, 8, 982-1012.

    27. [27]

      Gagic, Z.; Nikolic, K.; Ivkovic, B.; Filipic, S.; Agbaba, D. QSAR studies and design of new analogs of vitamin E with enhanced antiproliferative activity on MCF-7 breast cancer cells. J. Taiwan Inst. Chem. E 2016, 33-44.

    28. [28]

      Bai, Y. B.; Gao, Y. Q.; Nie, X. D.; Tuong, T.; Gao, J. M. Antifungal activity of griseofulvin derivatives against phytopathogenic fungi in vitro, in vivo, and 3D-QSAR analysis. J. Agric. Food Chem. 2019, 22, 6125-6132.

    29. [29]

      Li, Y. F.; Chang, Y. Q.; Deng, J.; Li, W. X.; Jian, J.; Gao, J. S.; Wan, X.; Gao, H.; Kurihara, H.; Sun, P. H.; He, R. R. Prediction and evaluation of the lipase inhibitory activities of tea polyphenols with 3D-QSAR models. Sci. Rep. 2016, 6, 34387-34387.

    30. [30]

      Tian, C. W.; Li, P. C.; Xin, Y. H.; Lei, Z.; Wan, P. Identification of potential tubulin polymerization inhibitors by 3D-QSAR, molecular docking and molecular dynamics. RSC. Adv. 2017, 7, 38479-38489.

    31. [31]

      Li, R.; Du, Y.; Gao, Z.; Shen, J. Molecular modeling studies on carbazole carboxamide based BTK inhibitors using docking and structure-based 3D-QSAR. Int. J. Mol. Sci. 2018, 4, 1244-1268.

    32. [32]

      Khamouli, S.; Belaidi, S.; Ouassaf, M.; Lanez, T.; Chtita, S. Multi-combined 3D-QSAR, docking molecular and ADMET prediction of 5-azaindazole derivatives as LRRK2 tyrosine kinase inhibitors. J. Biomol. Struct. Dyn. 2020, 1-14.

    33. [33]

      Lei, B.; Li, J.; Lu, J.; Du, J.; Liu, H.; Yao, X. Rational prediction of the herbicidal activities of novel protoporphyrinogen oxidase inhibitors by quantitative structure-activity relationship model based on docking-guided active conformation. J. Agric. Food Chem. 2009, 9593-9598.

    34. [34]

      Cruciani, G.; Baroni, T.; Clementi, S.; Costantino, F.; Skagerberg, B. Predictive ability of regression models. Part i: standard deviation of prediction errors (SDEP). J. Chemom. 1989, 3, 499-509.

    35. [35]

      Tosco, P.; Balle, T. A 3D-QSAR-driven approach to binding mode and affinity prediction. J. Chem. Inf. Model. 2012, 2, 302-307.

    36. [36]

      Tropsha, A. Alexander Golbraikh. Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr. Pharm. Des. 2007, 34, 3494-3504.

    37. [37]

      Tunkel, J.; Mayo, K.; Austin, C.; Hickerson, A.; Howard, P. Practical considerations on the use of predictive models for regulatory purposes. Environ. Sci. Technol. 2005, 7, 2188-2199.

    38. [38]

      Eroglu, E.; Türkmen, H. A DFT-based quantum theoretic QSAR study of aromatic and heterocyclic sulfonamides as carbonic anhydrase inhibitors against isozyme, CA-II. J. Mol. Graph. Model. 2007, 4, 701-708.

    39. [39]

      Maciej, S.; Małgorzata, W.; Ryszard, T.; Jakub, G. Application of artificial neural networks and DFT-based parameters for prediction of reaction kinetics of ethylbenzene dehydrogenase. J. Comput. Aided Mol. Des. 2006, 20, 145-157.

    40. [40]

      Bai, T. W.; Ni, X. F.; Ling, J.; Shen, Z. Q. Mechanism of Janus polymerization: a DFT study. Chin. J. Polym. Sci. 2019, 10, 94-100.

    41. [41]

      Frisch, G. W.; Trucks, H. B.; Schlegel, G. E.; Scuseria, M. A.; Robb, J. R.; Cheeseman, G.; Scalmani, V.; Barone, G. A.; Petersson, H.; Nakatsuji, X.; Li, M.; Caricato, A.; Marenich, J.; Bloino, B. G.; Janesko, R.; Gomperts, B.; Mennucci, H. P.; Hratchian, J. V.; Ortiz, A. F.; Izmaylov, J. L.; Sonnenberg, D.; Williams-Young, F.; Ding, F.; Lipparini, F.; Egidi, J.; Goings, B.; Peng, A.; Petrone, T.; Henderson, D.; Ranasinghe, V. G.; Zakrzewski, J.; Gao, N.; Rega, G.; Zheng, W.; Liang, M.; Hada, M.; Ehara, K.; Toyota, R.; Fukuda, J.; Hasegawa, M.; Ishida, T.; Nakajima, Y.; Honda, O.; Kitao, H.; Nakai, T.; Vreven, K.; Throssell, J. A.; Montgomery, Jr. J. E.; Peralta, F.; Ogliaro, M.; Bearpark, J. J.; Heyd, E.; Brothers, K. N.; Kudin, V. N.; Staroverov, T.; Keith, R.; Kobayashi, J.; Normand, K.; Raghavachari, A.; Rendell, J. C.; Burant, S. S.; Iyengar, J.; Tomasi, M.; Cossi, J. M.; Millam, M.; Klene, C.; Adamo, R.; Cammi, J. W.; Ochterski, R. L.; Martin, K.; Morokuma, O.; Farkas, J. B.; Foresman, D. J.; Fox, D. J. Gaussian 09, Revision A. 02, Gaussian, Inc.; Wallingford CT 2016.

    42. [42]

      Suryanarayanan, V.; Singh, S. K. Assessment of dual inhibition property of newly discovered inhibitors against PCAF and GCN5 through in silico screening, molecular dynamics simulation and DFT approach. J. Recept. Signal. Transduct. Res. 2015, 5, 370-380.

    43. [43]

      Andreas, W. G.; Mark, J. W.; Dong, X.; Duncan, P.; Scott, L. G.; Ross, C. W. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. J. Chem. Theory Comput. 2012, 5, 1542-1555.

    44. [44]

      Salomon, F. R.; Andreas, W. G.; Poole, D.; Grand, S. L.; Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878-3888.

    45. [45]

      Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 8, 3696-3713.

    46. [46]

      Lindorff, L, K.; Piana, S.; Palmo, K; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010, 8, 1950-1959.

    47. [47]

      Huang, K.; Luo, S.; Cong, Y.; Zhong, S.; Zhang, J.; Duan, L. An accurate free energy estimator: based on MM/PBSA combined with interaction entropy for protein-ligand binding affinity. Nanoscale 2020, 12, 10737-10750.

    48. [48]

      Sun, H. Y.; Duan, L. L.; Chen, F.; Liu, H.; Wang, Z.; Pan, P.; Zhu, F.; Zhang, Z. H.; Hou, T. J. Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches. Phys. Chem. Chem. Phys. 2018, 20, 14450-14460.

    49. [49]

      Fu, L.; Chen, Y.; Guo, H. M.; Xu, L.; Lin, Z. H. A selectivity study of polysubstituted pyridinylimidazoles as dual inhibitors of JNK3 and p38α MAPK based on 3D-QSAR, molecular docking, and molecular dynamics simulation. Struct. Chem. 2021, 32, 819-834.

    50. [50]

      Lucas, S.; Negri, M.; Heim, R.; Zimmer, C.; Hartmann, R. W. Fine-tuning the selectivity of aldosterone synthase inhibitors: structure-activity and structure-selectivity insights from studies of heteroaryl substituted 1, 2, 5, 6-tetrahydropyrrolo[3, 2, 1-ij]quinolin-4-one derivatives. J. Med. Chem. 2011, 7, 2307-2319.

    51. [51]

      Yin, L.; Hu, Q.; Hartmann, R. W. 3-pyridyl substituted aliphatic cycles as CYP11B2 inhibitors: aromaticity abolishment of the core significantly increased selectivity over CYP1A2. PLoS One 2012, 11, e48048-e48057.

    52. [52]

      Lipinski, C. A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 2000, 1, 235-249.

    53. [53]

      Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717-42729.

  • 加载中
    1. [1]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    2. [2]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    3. [3]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    4. [4]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    5. [5]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    6. [6]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    7. [7]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    8. [8]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    9. [9]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    10. [10]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    11. [11]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    12. [12]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    13. [13]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

    14. [14]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    15. [15]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    16. [16]

      Wei-Yu ZhouZi-Han XiNing-Ning DuLi YeMing-Hao JiangJin-Le HaoBin LinGuo-Dong YaoXiao-Xiao HuangShao-Jiang Song . Rapid discovery of two unprecedented meroterpenoids from Daphne altaica Pall. using molecular networking integrated with MolNetEnhancer and Network Annotation Propagation. Chinese Chemical Letters, 2024, 35(8): 109030-. doi: 10.1016/j.cclet.2023.109030

    17. [17]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    18. [18]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    19. [19]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    20. [20]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

Metrics
  • PDF Downloads(12)
  • Abstract views(825)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return