Citation: Na YANG, Hua YANG, Hai-Quan TIAN, Da-Cheng LI, Jian-Min DOU. Two Polynuclear Fe Complexes with Boat-like Core: Syntheses, Structures and Magnetic Properties[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220304. doi: 10.14102/j.cnki.0254-5861.2011-3311 shu

Two Polynuclear Fe Complexes with Boat-like Core: Syntheses, Structures and Magnetic Properties

  • Corresponding author: Hua YANG,  Jian-Min DOU, dougroup@163.com
  • Received Date: 19 July 2021
    Accepted Date: 15 September 2021

    Fund Project: the National Natural Science Foundation of China 21671093the National Natural Science Foundation of China 21701078

Figures(8)

  • Two novel polynuclear complexes {NaFe4(μ4-O)(L)4(μ2-Cl)[Fe(CN)5NO](H2O)(DMF)2} (1) and {NaFe4(μ4-O)(L)4(μ2-OEt)[Fe(CN)5NO](H2O)(DMF)2} (2) have been prepared using the tetradentate N-(2-hydroxyethyl)-3-methoxysalicylaldimine Schiff-base ligand (H2L) with the help of [Fe(CN)5NO]2- linkers, where the ligand was in situ synthesized through the condensation of o-vanillin and ethanolamine in the formation process of complexes. The resulting complexes possess "boat-like" structure constructed through three Fe ions and one Na ion with the fourth Fe ion acting as the "paddle". The "hull bottom" contains an eight-membered metallamacrocycle with metallacrown-like motif and [-M-O-] repeat unit. Both complexes display three-dimensional frameworks through C–H∙∙∙N hydrogen bonds, C–H∙∙∙Cl hydrogen bonds, and π-π stacking interactions with the introduction of solvent molecules and coordination anions. Variable-temperature magnetic susceptibility measurements reveal strong antiferromagnetic couplings between the metal centers in complexes 1 and 2.
  • 加载中
    1. [1]

      Nkabyo, H. A.; Barnard, I.; Koch, K. R.; Luckay, R. C. Recent advances in the coordination and supramolecular chemistry of monopodal and bipodal acylthiourea-based ligands. Coord. Chem. Rev. 2021, 427, 213588‒213611.  doi: 10.1016/j.ccr.2020.213588

    2. [2]

      Bernot, K.; Daiguebonne, C.; Calvez, G.; Yan, S.; Guillou, O. A journey in lanthanide coordination chemistry: from evaporable dimers to magnetic materials and luminescent devices. Acc. Chem. Res. 2021, 54, 427‒440.  doi: 10.1021/acs.accounts.0c00684

    3. [3]

      Saha, K.; Roy, D. K.; Dewhurst, R. D.; Ghosh, S.; Braunschweig, H. Recent advances in the synthesis and reactivity of transition metal σ-borane/borate complexes. Acc. Chem. Res. 2021, 54, 1260‒1273.  doi: 10.1021/acs.accounts.0c00819

    4. [4]

      Tsave, O.; Halevas, E.; Yavropoulou, M. P.; Papadimitriou, A. K.; Yovos, J. G.; Hatzidimitriou, A. Structure-specific adipogenic capacity of novel, well-defined ternary Zn(II)-Schiff base materials. Biomolecular correlations in zinc-induced differentiation of 3T3-L1 pre-adipocytes to adipocytes. J. Inorg. Biochem. 2015, 152, 123‒137.  doi: 10.1016/j.jinorgbio.2015.08.014

    5. [5]

      Yang, H.; Liu, Z.; Meng, Y.; Zeng, S.; Dou, J. A bell-like 15-metallacrown-5 complex from flexible H2glyha ligand: synthesis, structure and filed-induced slow magnetic relaxation. J. Mol. Struct. 2020, 1221, 128822‒128837.  doi: 10.1016/j.molstruc.2020.128822

    6. [6]

      Wei, L. Q.; Li, B. W.; Hu, S.; Zeng, M. H. Controlled assemblies of hepta- and trideca-coii clusters by a rational derivation of salicylalde Schiff bases: microwave-assisted synthesis, crystal structures, ESI-MS solution analysis and magnetic properties. CrystEngComm. 2011, 13, 510‒516.  doi: 10.1039/C0CE00085J

    7. [7]

      Mayans, J.; Font-Bardia, M.; Escuer, A. Triple halide bridges in chiral Mn2IIMn6IIINa2I cages: structural and magnetic characterization. Inorg. Chem. 2018, 57, 926‒929.  doi: 10.1021/acs.inorgchem.7b03125

    8. [8]

      Yang, W.; Yang, H.; Zeng, S.; Li, D. C.; Dou, J. Unprecedented family of heterometallic LnIII[18-metallacrown-6] complexes: syntheses, structures, and magnetic properties. Dalton Trans. 2017, 46, 13027‒13034.  doi: 10.1039/C7DT02735D

    9. [9]

      Zhang, Y.; Wu, J.; Shen, S.; Liu, Z.; Tang, J. Coupling Dy3 triangles into hexanuclear dysprosium(III) clusters: syntheses, structures and magnetic properties. Polyhedron 2018, 150, 40‒46.  doi: 10.1016/j.poly.2018.04.042

    10. [10]

      Zou, H. H.; Wang, R.; Chen, Z. L.; Liu, D. C.; Liang, F. P. Series of edge-sharing bi-triangle Ln4 clusters with a µ4-NO3 bridge: syntheses, structures, luminescence, and the SMM behavior of the Dy4 analogue. Dalton Trans. 2014, 43, 2581‒2587.  doi: 10.1039/C3DT52316K

    11. [11]

      Peng, Y.; Mereacre, V.; Baniodeh, A.; Lan, Y.; Schlageter, M.; Kostakis, G. E. Effect of ligand field tuning on the SMM behavior for three related alkoxide-bridged dysprosium dimers. Inorg. Chem. 2016, 55, 68‒74.  doi: 10.1021/acs.inorgchem.5b01793

    12. [12]

      Lu, Z.; Fan, T.; Guo, W.; Lu, J.; Fan, C. Synthesis, structure and magnetism of three cubane Cu(II) and Ni(II) complexes based on flexible Schiff-base ligands. Inorg. Chim. Acta 2013, 400, 191‒196.  doi: 10.1016/j.ica.2013.02.030

    13. [13]

      Wang, Y. N.; Zhang, P.; Yu, J. H.; Xu, J. Q. 4-(4-carboxyphenoxy)phthalate-based coordination polymers and their application in sensing nitrobenzene. Dalton Trans. 2015, 44, 1655‒1663.  doi: 10.1039/C4DT02762K

    14. [14]

      Hoshino, N.; Ako, A. M.; Powell, A. K.; Oshio, H. Molecular magnets containing wheel motifs. Inorg. Chem. 2009, 48, 3396‒3407.  doi: 10.1021/ic801776w

    15. [15]

      Chan, M. H. Y.; Leung, Y. L.; Yam, W. W. Controlling self-assembly mechanisms through rational molecular design in oligo(p-phen-yleneethynylene)-containing alkynylplatinum(II) 2, 6-bis(n-alkylbenzimidazol-2΄-yl)pyridine amphiphiles. J. Am. Chem. Soc. 2018, 140, 7637−7646.  doi: 10.1021/jacs.8b03628

    16. [16]

      Sessoli, R.; Tsai, H. L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K. High-spin molecules: [Mn12O12(O2Cr)16(H2O)4]. J. Am. Chem. Soc. 1993, 115, 1804−1816.  doi: 10.1021/ja00058a027

    17. [17]

      Chow, C. Y.; Trivedi, E. R.; Pecoraro, V. L.; Zaleski, C. M. Heterometallic mixed 3d-4f metallacrowns: structural versatility, luminescence, and molecular magnetism. Comment Inorg. Chem. 2015, 35, 1−40.  doi: 10.1080/02603594.2014.974805

    18. [18]

      Noord, C. V.; Kampf, J. W.; Pecoraro, V. L. Preparation of resolved fourfold symmetric amphiphilic helices using chiral metallacrown building blocks. Angew. Chem. Int. Ed. 2002, 41, 4667−70.  doi: 10.1002/anie.200290010

    19. [19]

      Deng, M.; Yang, P.; Liu, X.; Xia, B.; Chen, Z.; Ling, Y. End-end connection pattern of trinuclear-triangular copper cluster for construction of two metal-organic frameworks: syntheses, structures, magnetic and gas adsorption properties. Cryst. Growth Des. 2015, 153, 5794−5799.

    20. [20]

      Xu, H. B.; Wang, B. W.; Pan, F.; Wang, Z. M.; Gao, S. Stringing oxo-centered trinuclear [Mn3IIIO] units into single-chain magnets with formate or azide linkers. Angew. Chem. Int. Ed. 2007, 119, 7532−7536.  doi: 10.1002/ange.200702648

    21. [21]

      Lah, M. S.; Pecoraro, V. L. Isolation and characterization of {MnII[MnIII(salicylhydroximate)]4(acetate)2(DMF)6∙cntdot∙2DMF: an inorganic analog of M2+[12-crown-4]. J. Am. Chem. Soc. 1989, 111, 7258−7289.  doi: 10.1021/ja00200a054

    22. [22]

      Cao, F.; Wang, S.; Li, D. Family of mixed 3d-4f dimeric 14-metallacrown-5 compounds: syntheses, structures, and magnetic properties. Inorg. Chem. 2013, 52, 10747−10755.  doi: 10.1021/ic3025952

    23. [23]

      Nguyen, T. N.; Chow, C. Y.; Eliseeva, S. V.; Trivedi, E. R.; Kampf, J. W.; Martini, I. One-step assembly of visible and near-infrared emitting metallacrown dimers using a bifunctional linker. Chem. Eur. J. 2018, 24, 1031−1035.  doi: 10.1002/chem.201703911

    24. [24]

      Woo, S. Y.; Mallah, T.; Pecoraro, V.; Kociak, M.; Zobelli, A. Luminescence from isolated Tb-based metallacrown molecular complexes on h -BN. Microsc. Microanal. 2019, 25, 604−605.  doi: 10.1017/S1431927619003751

    25. [25]

      Muravyeva, M. S.; Zabrodina, G. S.; Samsonov, M. A.; Kluev, E. A.; Khrapichev, A. A.; Katkova, M. A.; Mukhina, I. V. Water-soluble tetraaqua Ln(III) glycinehydroximate 15-metallacrown-5 complexes towards potential MRI contrast agents for ultra-high magnetic field. Polyhedron 2016, 114, 165−171.  doi: 10.1016/j.poly.2015.11.033

    26. [26]

      Chow, C. Y.; Guillot, R.; Rivière, E.; Kampf, J. W.; Pecoraro, V. L. Synthesis and magnetic characterization of Fe(III)-based 9-metallacrown-3 complexes which exhibit magnetorefrigerant properties. Inorg. Chem. 2016, 55, 10238–10247.  doi: 10.1021/acs.inorgchem.6b01404

    27. [27]

      Happ, P.; Rentschler, E. Enforcement of a high-spin ground state for the first 3d heterometallic 12-metallacrown-4 complex. Dalton Trans. 2014, 43, 15308–15312.  doi: 10.1039/C4DT02275K

    28. [28]

      Jin, C.; Yu, H.; Jin, L.; Wu, L.; Zhou, Z. Esterification and isolation of the carboxylic acid with salicyl-bis-hydrazide via coordination of iron(III) 18-metallacrown-6 complex. J. Coord. Chem. 2010, 63, 3772–3782.  doi: 10.1080/00958972.2010.520706

    29. [29]

      Jin, C. Z.; Wu, S. X.; Jin, L. F.; Wu, L. M.; Zhang, J. Esterification of the ligand: synthesis, characterization and crystal structure of an iron(III) 18-metallacrown-6 complex with methyl 4-(5-chlorosalicylhydrazinocarbonyl) butyrate. Inorg. Chim. Acta 2012, 383, 20–25.  doi: 10.1016/j.ica.2011.10.021

    30. [30]

      Thorarinsdottir, A. E.; Gaudette, A. I.; Harris, T. D. Spin-crossover and high-spin iron(II) complexes as chemical shift 19f magnetic resonance thermometers. Chem. Sci. 2017, 8, 2448–2456.  doi: 10.1039/C6SC04287B

    31. [31]

      Phonsri, W.; Martinez, V.; Davies, C. G.; Jameson, G.; Moubaraki, B.; Murray, K. S. Ligand effects in a heteroleptic bis-tridentate iron(III) spin crossover complex showing a very high 1/2 value. Chem. Commun. 2016, 52, 1443–1446.  doi: 10.1039/C5CC08701E

    32. [32]

      Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112‒122.

    33. [33]

      Alvarez, S.; Alemany, P.; Casanova, D.; Cirera, J.; Llunell, M.; Avnir, D. Shape maps and polyhedral interconversion paths in transition metal chemistry. Coord. Chem. Rev. 2005, 249, 1693–1708.  doi: 10.1016/j.ccr.2005.03.031

    34. [34]

      Liu, W. T.; Thorp, H. H. Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. 2. refined distances and other enzymes. Inorg. Chem. 1993, 32, 4102–4105.  doi: 10.1021/ic00071a023

    35. [35]

      Yuan, A. H.; Lu, L. D.; Shen, X. P.; Chen, L. Z.; Yu, K. B. Synthesis, crystal structure and magnetic properties of a two-dimensional mixed-valence assembly [Fe(salen)]2[Fe(CN)5NO]. Transit. Metal Chem. 2003, 28, 163–167.  doi: 10.1023/A:1022977403373

    36. [36]

      Chilton, N. F.; Anderson, R. P.; Turner, L. D.; Soncini, A.; Murray, K. S. PHI: a powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes. J. Comput. Chem. 2013, 34, 1164–1175.

    37. [37]

      Widita, R.; Muhammady, S.; Prasetiyawati, R. D.; Marlina, R.; Darma, Y. Revisiting the structural, electronic, and magnetic properties of (LaO)MnAs: effect of hubbard correction and origin of mott-insulating behavior. ACS Omega. 2021, 6, 4440–4447.  doi: 10.1021/acsomega.0c05889

  • 加载中
    1. [1]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    2. [2]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    3. [3]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    4. [4]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    5. [5]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    8. [8]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    9. [9]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    10. [10]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    11. [11]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    12. [12]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    13. [13]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    14. [14]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    15. [15]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    16. [16]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    17. [17]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    18. [18]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    19. [19]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    20. [20]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

Metrics
  • PDF Downloads(2)
  • Abstract views(614)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return