Citation: E LIU, Ai-Quan JIA, Qian-Feng ZHANG, Fang-Fang JIAN. A Double Crown Hexakis[(Di-μ-benzylthio) Nickel] Cluster: Synthesis, Structure and Properties[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220304. doi: 10.14102/j.cnki.0254-5861.2011-3309 shu

A Double Crown Hexakis[(Di-μ-benzylthio) Nickel] Cluster: Synthesis, Structure and Properties

  • Corresponding author: E LIU, 798233143@haust.edu.cn Qian-Feng ZHANG, zhangqf@ahut.edu.cn
  • Received Date: 15 July 2021
    Accepted Date: 14 September 2021

    Fund Project: the Research Initiation Fund for Distinguished Professors of Henan University of Science 13510007

Figures(8)

  • The double crown hexakis[(di-μ-benzylthio) nickel] cluster, [Ni6(SCH2C6H5)12]·C2H5OH, was obtained by reacting C6H5CH2SNa with [(CH3)2CHOCS2]2Ni in EtOH. The results of electrochemical studies show that [Ni6(SCH2C6H5)12] is a quasi-reversible process. The crystal structure of [Ni6(SCH2C6H5)12]·C2H5OH is composed of discrete [Ni6(SCH2C6H5)12] and C2H5OH solvent molecules. Each Ni atom is surrounded by four S atoms of the μ2-SCH2C6H5 ligands in a distorted square-planar structure. The C6H5CH2S- side chains are arranged in the axial and equatorial positions, alternately, concerning the pseudo-hexagonal axis of the molecule. Strong π-π and C–H···π effects form the supramolecular nano-channel along the a-axis in the crystal, which wraps the solvent ethanol molecules in it. In addition, a wall is formed along the b- and c-axes, so that the ethanol molecules can freely enter and leave along the a-axis. These effects result in the ability of the title compound to adsorb and desorb ethanol molecules. Thermogravimetric analysis and powder X-ray diffraction at different temperature are provided to demonstrate this point.
  • 加载中
    1. [1]

      Diercks, C. S.; Yaghi, O. M. The atom, the molecule and the covalent organic framework. Science 2017, 355, 585.

    2. [2]

      Savastano, M.; Bazzicalupi, C.; Bianchi, A. Porous frameworks based on supramolecular ball joints: bringing flexibility to ordered 3D lattices. Chem. Eur. J. 2020, 26, 5994–6005.  doi: 10.1002/chem.202000505

    3. [3]

      Liu, Y. K.; Zhou, X. H. Synthesis, structure and property of a metal-organic framework based on 9-(2, 6-dicarboxy-pyridin-4-yl)-9H-carbazole-3, 6-dicarboxylic acid. Chin. J. Struct. Chem. 2020, 39, 559–566.

    4. [4]

      Wilson, B. H.; Scott, H. S.; Qazvini, O. T.; Telfer, S. G.; Mathoniere, C.; Clerac, R.; Kruger, P. E. A supramolecular porous material comprising Fe(Ⅱ) mesocates. Chem. Commum. 2018, 54, 13391–13394.  doi: 10.1039/C8CC07227B

    5. [5]

      Yang, K.; Luo J. H.; Yong, S. L.; Li, H. X.; Zhang, X. Y. Synthesis and structure of a new gadolinium porous complex assembled from 2, 3-pyrazinedicarboxylic acid and ammonia. Chin. J. Struct. Chem. 2019, 38, 1773–1778.

    6. [6]

      Niel, V.; Munoz, M. C.; Gaspar, A. B. Thermal, pressure, and light-induced spin transition in novel cyanide-bridged Fe-AgI bimetallic compounds with three-dimensional interpenetrating double structures {FeLx[Ag(CN)2]2}⋅G. Chem. Eur. J. 2002, 8, 2446–2453.  doi: 10.1002/1521-3765(20020603)8:11<2446::AID-CHEM2446>3.0.CO;2-K

    7. [7]

      Tian, J.; Chen, L.; Zhang, D. W.; Liu, Y.; Li, Z. T. Supramolecular organic frameworks: engineering periodicity in water through host-guest chemistry. Chem. Commun. 2016, 52, 6351–6362.  doi: 10.1039/C6CC02331B

    8. [8]

      Huang, Y. H.; Xu, Y.; Zheng, B. S.; Wang, Z. X.; Dong, Q. B.; Duan, J. G. Molecular sieving of C2H4 from C2H2 by a supramolecular porous material. Energ. Fuel. 2020, 34, 11315–11321.  doi: 10.1021/acs.energyfuels.0c01958

    9. [9]

      Wasson, M. C.; Zhang, X.; Otake, K. I.; Rosen, A. S.; Alayoglu, S.; Krzyaniak, M. D.; Chen, Z. J.; Redfern, L. R.; Robison, L.; Son, F. A.; Chen, Y. W.; Islamoglu, T.; Notestein, J. M.; Snurr, R. Q.; Wasielewski, M. R.; Farha, O. K. Supramolecular porous assemblies of atomically precise catalytically active cerium-based clusters. Chem. Mater. 2020, 32, 8522–8529.  doi: 10.1021/acs.chemmater.0c02740

    10. [10]

      Lu, J.; Paliwala, T.; Lim, S. C. Coordination polymers of Co(NCS)2 with pyrazine and 4, 4-bipyridine:  syntheses and structures. Inorg. Chem. 1997, 36, 923–926.  doi: 10.1021/ic961158g

    11. [11]

      Kondo, M.; Shimamura, M.; Noro, S. I. Microporous materials constructed from the interpenetrated coordination networks. Structures and methane adsorption properties. Chem. Mater. 2000, 12, 1288–1294.  doi: 10.1021/cm990612m

    12. [12]

      Katkova, M. A.; Zhigulin, G. Y.; Rumyantcev, R. V.; Zabrodina, G. S.; Shayapov, V. R.; Sokolov, M. N.; Ketkov, S. Y. Water-soluble bismuth(Ⅲ) polynuclear tyrosinehydroximate metallamacrocyclic complex: structural parallels to lanthanide metallacrowns. Molecules 2020, 25, 4379.  doi: 10.3390/molecules25194379

    13. [13]

      DiStefano, J. G.; Murthy, A. A.; Hao, S. Q.; Roberto, D. R.; Wolverton, C.; Dravid, V. P. Topology of transition metal dichalcogenides: the case of the core-shell architecture. Nanoscale 2020, 12, 23897–23919.  doi: 10.1039/D0NR06660E

    14. [14]

      Wang, J.; Jian, F. F.; Huang, B. X.; Bai, Z. S. Two molecular wheels 12-MC-6 complexes: synthesis, structure and magnetic property of [Co(μ2-SEt)2]6 and [Fe(μ2-SEt)2]6. J. Solid State Chem. 2013, 204, 272–277.  doi: 10.1016/j.jssc.2013.06.007

    15. [15]

      Zou, G.; Hu, Z.; Hu, B. Study on synthesis of tert-butyl benzyl mercaptan by urea salt method. Jiangxi Chem. Eng. 2001, 1, 21–25.

    16. [16]

      Sheldrick, G. M. Phase annealing in SHELX-90: direct methods for larger structures. Acta Cryst. A46 1990, 467–473.

    17. [17]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.  doi: 10.1107/S0021889808042726

    18. [18]

      Sheldrick, G. M. SHELXT-Integrated space-group and crystal-structure determination. Acta Cryst. A 2015, 71, 3–8.  doi: 10.1107/S2053273314026370

    19. [19]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8.  doi: 10.1107/S2053229614024218

    20. [20]

      Wilson, A. J. International Table for X-ray Crystallography, Vol. C (Kluwer. Dordrecht. 1994) Tables 6.1. 1.4, 500–502.

    21. [21]

      Jian, F. F.; Jiao, K.; Li, Y.; Zhao, P. S.; Lu, L. D. [Ni6(SCH2CH2OH)12]: a double crown [12] metallacrown-6 nickel(Ⅱ) cluster. Angew. Chem. Int. Ed. 2003, 42, 5722–5731.  doi: 10.1002/anie.200351896

    22. [22]

      Zhang, C.; Takada, S.; Kolzer, M.; Matsumoto, T.; Tatsumi, K. Nickel(Ⅱ) thiolate complexes with a flexible cyclo-{Ni10S20} framework. Angew Chem. Int. Ed. 2006, 45, 3768–3772.  doi: 10.1002/anie.200600319

    23. [23]

      Woodward, P.; Dahl, L. F.; Abel, E. W.; Crosse, B. C. A new type of cyclic transition metal complex, [Ni(SC2H5)2]6. J. Am. Chem. Soc. 1965, 87, 5251–5258.  doi: 10.1021/ja00950a049

    24. [24]

      Sletten, J.; Kovacs, J. A. The structure of a toroidal, neutral, homoleptic Ni(Ⅱ) complex with a chelate dithiolate ligand, [Ni6(SCH2CH2CH2S)6]. Acta Chem. Scand. 1994, 48, 929–932.  doi: 10.3891/acta.chem.scand.48-0929

    25. [25]

      Newton, G. N.; Sato, H.; Shiga, T.; Oshio, H. Stepwise replacement of nickel with cobalt ions in a [Ni6] cluster. Dalton Trans. 2013, 6701–6704.

    26. [26]

      Wang, X. Q.; Liu, S. X.; Liu, Y. W.; He, D. F.; Li, N.; Miao, J.; Ji, Y. J.; Yang, G. Y. Planar {Ni-6} cluster-containing polyoxometalate-based inorganic-organic hybrid compound and its extended structure. Inorg. Chem. 2014, 54, 13130–13135.

    27. [27]

      Zhang, X. M.; Fang, R. Q.; Wu, H. S. Extended water tapes of cyclic hexamers encapsulated in the channels of a metal phosphonocarboxylate network. Cryst. Growth Des. 2005, 5, 1335–1339.  doi: 10.1021/cg0500829

    28. [28]

      Mirceski, V.; Stojanov, L.; Ogorevc, B. Step potential as a diagnostic tool in square-wave voltammetry of quasi-reversible electrochemical processes. Electrochim. Acta 2019, 327, 134997.  doi: 10.1016/j.electacta.2019.134997

    29. [29]

      Duval, J. F. L.; Buffle, J.; van Leeuwen, H. P. Quasi-reversible faradaic depolarization processes in the electrokinetics of the metal/solution interface. J. Phy. Chem. B 2006, 110, 6081–6094.  doi: 10.1021/jp055650+

    30. [30]

      Simonov, A. N.; Morris, G. P.; Mashkina, E. A.; Bethwaite, B.; Gillow, K.; Baker, R. E.; Gavaghan, D. J.; Bond, A. M. Inappropriate use of the quasi-reversible electrode kinetic model in simulation-experiment comparisons of voltammetric processes that approach the reversible limit. Anal. Chem. 2014, 86, 8408–8417.  doi: 10.1021/ac5019952

  • 加载中
    1. [1]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    2. [2]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    3. [3]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    4. [4]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    5. [5]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    6. [6]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    7. [7]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    8. [8]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    9. [9]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    10. [10]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    11. [11]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    12. [12]

      Junjie WangYan WangZhengdong LiChangqiang XieMusammir KhanXingzhou PengFabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934

    13. [13]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    14. [14]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    15. [15]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    16. [16]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    17. [17]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    18. [18]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    19. [19]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    20. [20]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

Metrics
  • PDF Downloads(4)
  • Abstract views(424)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return