Citation: Ling-Yun MO, Bai-Kang YUAN, Jie ZHU, Li-Tang QIN, Jun-Feng DAI. QSAR Models for Predicting Additive and Synergistic Toxicities of Binary Pesticide Mixtures on Scenedesmus Obliquus[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220316. doi: 10.14102/j.cnki.0254-5861.2011-3306 shu

QSAR Models for Predicting Additive and Synergistic Toxicities of Binary Pesticide Mixtures on Scenedesmus Obliquus

  • Corresponding author: Li-Tang QIN, qinsar@163.com Jun-Feng DAI, whudjf@163.com
  • Received Date: 9 July 2021
    Accepted Date: 13 October 2021

    Fund Project: the National Key Research and Development Program of China 2019YFC0507502Guangxi Science and Technology Major Special Project Guike-AA2016004Natural Science Foundation of Guangxi Province 2018GXNSFAA281156Guilin Scientific Research and Technology Development Program 20180107-5Guilin Scientific Research and Technology Development Program 20180101-1

Figures(4)

  • Pesticides released into the environment may pose potential risks to the ecological system and human health. However, existing toxicity data on pesticide mixtures still lack, especially regarding the toxic interactions of their mixtures. This study aimed to determine the toxic interactions of binary mixtures of pesticides on Scenedesmus Obliquus (S. obliquus) and to build quantitative structure-activity relationship models (QASR) for predicting the mixture toxicities. By applying direct equipartition ray method to design binary mixtures of five pesticides (linuron, dimethoate, dichlorvos, trichlorfon and metribuzin), the toxicity of a single pesticide and its mixture was tested by microplate toxicity analysis on S. obliquus. The QASR models were built for combined toxicity of binary mixtures of pesticides at the half-maximal effective concentration (EC50), 30% maximal effective concentration (EC30) and 10% maximal effective concentration (EC10). The results showed that the single toxicity follows: metribuzin > linuron > dichlorvos > trichlorfon > dimethoate. The mixtures of linuron and trichlorfon, dichlorvos and metribuzin, dimethoate and metribuzin induced synergetic effects, while the remaining binary mixtures exhibited additive. The developed QSAR models were internally validated using the leave-one-out cross-validation (LOO), leave-many-out cross-validation (LMO), bootstrapping, and y-randomization test, and externally validated by the test sets. All three QSAR models satisfied well with the experimental values for all mixture toxicities, and presented high internally (R2 and Q2 > 0.85) and externally (QF12, QF22, and QF32 > 0.80) predictive powers. The developed QSAR models could accurately predict the toxicity values of EC50, EC30 and EC10 and were superior to the concentration addition model's results (CA). Compared to the additive effect, the QSAR model could more accurately predict the binary mixture toxicities of pesticides with synergistic effects.
  • 加载中
    1. [1]

      Papa, E.; Battaini, F.; Gramatica, P. Ranking of aquatic toxicity of esters modelled by QSAR. Chemosphere 2005, 58, 559−570.  doi: 10.1016/j.chemosphere.2004.08.003

    2. [2]

      Park, J. A.; Abd El-Aty, A. M.; Zheng, W.; Kim, S. K.; Cho, S. H.; Choi, J. M.; Hacimuftuo, A.; Jeong, J. H.; Wang, J.; Shim, J. H.; Shin, H. C. Simultaneous determination of clanobutin, dich-lorvos, and naftazone in pork, beef, chicken, milk, and egg using liquid chromatography-tandem mass spectrometry. Food Chem. 2018, 252, 40−48.  doi: 10.1016/j.foodchem.2018.01.085

    3. [3]

      Yu, Y.; Hu, S.; Yang, Y.; Zhao, X.; Xue, J.; Zhang, J.; Gao, S.; Yang A. Successive monitoring surveys of selected banned and restricted pesticide residues in vegetables from the northwest region of China from 2011 to 2013. Bmc. Pub. Hea. 2018, 18, 91−100.  doi: 10.1186/s12889-017-4632-x

    4. [4]

      Zheng, S.; Chen, B.; Qiu, X.; Chen, M.; Ma, Z.; Yu, X. Distribution and risk assessment of 82 pesticides in jiulong river and estuary in south China. Chemosphere 2016, 144, 1177−1192.  doi: 10.1016/j.chemosphere.2015.09.050

    5. [5]

      Ccanccapa, A.; Masiá, A.; Andreu, V. Spatio-temporal patterns of pesticide residues in the turia and júcar rivers (Spain). Sci. Total Environ. 2016, 540, 200−210.  doi: 10.1016/j.scitotenv.2015.06.063

    6. [6]

      Xu, Y. C.; Wang, S. S.; Xu, J. J.; Yu, G. M. Monitoring pesticide residues in source of drinking water in rural area, Yantai. Mod. Prev. Med. 2015, 42, 1704−1707.

    7. [7]

      Chen, C.; Zou, W. B.; Cui, G. L.; Tian, J. C.; Wang, Y. C.; Ma, L. M. Ecological risk assessment of current-use pesticides in an aquatic system of Shanghai, China. Chemosphere 2020, 257, 127−222.

    8. [8]

      Tien, C. J.; Chen, C. S. Assessing the toxicity of organophosphorous pesticides to indigenous algae with implication for their ecotoxicological impact to aquatic ecosystems. J. Envir. Sci. Hea. Part. B 2012, 47, 901−912.  doi: 10.1080/03601234.2012.693870

    9. [9]

      Wan, L.; Wu, Y.; Ding, H.; Zhang, W. Toxicity, biodegradation, and metabolic fate of organophosphorus pesticide trichlorfon on the freshwater algae chlamydomonas reinhardtii. J. Agric. Food Chem. 2020, 68, 1645−1653.  doi: 10.1021/acs.jafc.9b05765

    10. [10]

      Liu, S. S.; Wang, C. L.; Zhang, J.; Zhu, X. W.; Li, W. Y. Combined toxicity of pesticide mixtures on green algae and photobacteria. Ecotoxicol. Environ. Saf. 2013, 95, 98−103.  doi: 10.1016/j.ecoenv.2013.05.018

    11. [11]

      Tao, Y.; Jia, C.; Jing, J.; Zhang, J.; Yu, P.; He, M.; Wu, J.; Chen, L.; Zhao, E. Occurrence and dietary risk assessment of 37 pesticides in wheat fields in the suburbs of Beijing, China. Food Chem. 2021, 350, 129245.  doi: 10.1016/j.foodchem.2021.129245

    12. [12]

      Du, L.; Li, S.; Qi, L.; Hou, Y.; Yan, Z.; Wei, X.; Wang, H.; Zhao, X.; Sun, C. Metabonomic analysis of the joint toxic action of long-term low-level exposure to a mixture of four organophosphate pesticides in rat plasma. Mol. Biosyst. 2014, 10, 1153−1161.  doi: 10.1039/C4MB00044G

    13. [13]

      Qin, L. T.; Chen, Y. H.; Zhang, X.; Mo, L. Y.; Zeng, H. H.; Liang, Y. P. QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide. Chemosphere 2018, 198, 122−129.  doi: 10.1016/j.chemosphere.2018.01.142

    14. [14]

      Mo, L. Y.; Zhao, D. N.; Qin, M.; Qin, L. T.; Zeng, H. H.; Liang, Y. P. Joint toxicity of six common heavy metals to chlorella pyrenoidosa. Environ. Sci. Pollut. Res. 2017, 26, 30554−30560.

    15. [15]

      Mo, L. Y.; Liu, J.; Qin, L. T.; Zeng, H. H.; Liang, Y. P. Two-stage prediction on effects of mixtures containing phenolic compounds and heavy metals on Vibrio qinghaiensis sp. Q67. Bull. Environ. Contam. Toxicol. 2017, 99, 17−22.  doi: 10.1007/s00128-017-2099-1

    16. [16]

      Zhang, S. N.; Su, L. M.; Zhang, X. J.; Li, C.; Qin, W. C.; Zhang, D. M.; Liang, X. X.; Zhao, Y. H. Combined toxicity of nitro-substituted benzenes and zinc to photobacterium phosphoreum: evaluation and QSAR analysis. Int. J. Env. Res. Pub. He. 2019, 16, 1041−1052.  doi: 10.3390/ijerph16061041

    17. [17]

      Dou, R. N.; Liu, S. S.; Mo, L. Y.; Liu, H. L.; Deng, F. C. A novel direct equipartition ray design (EquRay) procedure for toxicity interaction between ionic liquid and dichlorvos. Environ. Sci. Pollut. Res. 2011, 18, 734−742.  doi: 10.1007/s11356-010-0419-7

    18. [18]

      Zhou, B.; Xin, L. The monitoring of chemical pesticides pollution on ecological environment by GIS. Environ. Technol. Inno. 2021, 34, 101506.

    19. [19]

      Calvo, S.; Romo, S.; Soria, J. Pesticide contamination in water and sediment of the aquatic systems of the natural park of the albufera of valencia (spain) during the rice cultivation period. Sci. Total Environ. 2021, 774, 145009.  doi: 10.1016/j.scitotenv.2021.145009

    20. [20]

      Thomas, M. C.; Flores, F.; Kaserzon, S. Toxicity of ten herbicides to the tropical marine microalgae Rhodomonas salina. Sci. Rep. 2020, 10, 7612.  doi: 10.1038/s41598-020-64116-y

    21. [21]

      Ge, H. L.; Liu, S. S.; Su, B. X. Predicting joint toxicity of organophosphorus and triazine pesticides on green algae using the generalized concentration addition model. J. Environ. Sci. 2014, 34, 2413−2419.

    22. [22]

      Owczarek, K.; Kudak, B. J.; Simeonov, V.; Mazerska, Z.; Namienik, J. Binary mixtures of selected bisphenols in the environment: their toxicity in relationship to individual constituents. Molecules 2018, 23, 3226−3239.  doi: 10.3390/molecules23123226

    23. [23]

      Liu, S. S.; Zhang, J.; Zhang, Y. H.; Qin, L. T. APTox: assessment and prediction on toxicity of chemical mixtures. Acta Chim. Sin. 2012, 70, 1511−1517.  doi: 10.6023/A12050175

    24. [24]

      Qu, R. J.; Liu, H. X.; Feng, M. B.; Yang, X.; Wang, Z. Y. Investigation on intramolecular hydrogen bond and some thermodynamic properties of polyhydroxylated anthraquinones. J. Chem. Eng. Data 2012, 57, 2442−2455.  doi: 10.1021/je300407g

    25. [25]

      Shi, J. Q.; Qu, R. J.; Feng, M. B.; Wang, X. G.; Wang, L. S.; Yang, S. G.; Wang, Z. Y. Oxidative degradation of decabromodiphenyl ether (BDE 209) by potassium permanganate: reaction pathways, kinetics, and mechanisms assisted by density functional theory calculations. Environ. Sci. Technol. 2015, 49, 4209−4217.  doi: 10.1021/es505111r

    26. [26]

      Andrea, M.; Viviana, C.; Manuela, P.; Roberto, T. Dragon software: an easy approach to molecular descriptor calculations. Match-Commun. Math. Co. 2006, 56, 237−248.

    27. [27]

      Chatterjee, M.; Roy, K. Prediction of aquatic toxicity of chemical mixtures by the QSAR approach using 2D structural descriptors. J. Hazard. Mater. 2021, 408, 124936.  doi: 10.1016/j.jhazmat.2020.124936

    28. [28]

      Kurt, B. Z.; Gazioglu, I.; Sonmez, F.; Kucukislamoglu, M. Synthesis, antioxidant and anticholinesterase activities of novel coumarylthiazole derivatives. Bioorg. Chem. 2015, 59, 80−90.  doi: 10.1016/j.bioorg.2015.02.002

    29. [29]

      Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J. Comput. Chem. 2013, 34, 2121−2132.  doi: 10.1002/jcc.23361

    30. [30]

      Kunal, R.; Supratik, K.; Pravin, A. On a simple approach for determining applicability domain of QSAR models. Chemometr. Intell. Lab. Syst. 2015, 145, 22−29.  doi: 10.1016/j.chemolab.2015.04.013

    31. [31]

      Jonker, M. J.; Svendsen, C.; Bedaux, J. J. M.; Bongers, M.; Kammenga, J. E. Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis. Environ. Toxicol. Chem. 2005, 24, 2701−2713.  doi: 10.1897/04-431R.1

    32. [32]

      Syberg, K.; Elleby, A.; Pedersen, H.; Cedergreen, N.; Forbes, V. E. Mixture toxicity of three toxicants with similar and dissimilar modes of action to Daphnia magna. Ecotoxicol. Environ. Saf. 2008, 69, 428−436.  doi: 10.1016/j.ecoenv.2007.05.010

    33. [33]

      Eriksson, L.; Jaworska, J.; Worth, A. P.; Cronin, M.; Mcdowell, R. M. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health Persp. 2003, 111, 1361−1375.  doi: 10.1289/ehp.5758

    34. [34]

      Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform. 2010, 29, 476−488.  doi: 10.1002/minf.201000061

    35. [35]

      Chirico, N.; Gramatica, P. Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J. Chem. Inf. Model. 2011, 51, 2320−2335.  doi: 10.1021/ci200211n

    36. [36]

      Kiralj, R.; Ferreira, M. Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J. Brazil. Chem. Soc. 2008, 20, 770−787.

    37. [37]

      Shi, L. M.; Fang, H.; Tong, W. QSAR models using a large diverse set of estrogens. J. Chem. Inf. Comp. Sci. 2001, 41, 186−195.  doi: 10.1021/ci000066d

    38. [38]

      Tropsha, A.; Gramatica, P.; Gombar, V. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci. 2003, 22, 69−77.  doi: 10.1002/qsar.200390007

    39. [39]

      Ghodsi, R.; Hemmateenejad, B. QSAR study of diarylalkylimidazole and diarylalkyltriazole aromatase inhibitors. Med. Chem. Res. 2016, 25, 834−842.  doi: 10.1007/s00044-016-1530-1

    40. [40]

      Asadollahi, T.; Dadfarnia, S.; Shabani, A. M. H.; Ghasemi, J. B.; Sarkhosh, M. QSAR models for cxcr2 receptor antagonists based on the genetic algorithm for data preprocessing prior to application of the PLS linear regression method and design of the new compounds using in silico virtual screening. Molecules 2011, 16, 1928−1955.  doi: 10.3390/molecules16031928

    41. [41]

      Yang, F.; Wang, M.; Wang, Z. Y. Sorption behavior of 17 phthalic acid esters on three soils: effects of pH and dissolved organic matter, sorption coefficient measurement and QSPR study. Chemosphere 2013, 93, 82−89.  doi: 10.1016/j.chemosphere.2013.04.081

    42. [42]

      Zhang, Q. Y.; Hu, W. P.; Hao, J. F.; Liu, X. H.; Xu, L. Chiral topological charge index and its applications. Acta Chim. Sin. 2010, 68, 883−888.

    43. [43]

      Wang, X.; Jie, O.; Zhao, F. Local kronecker delta property of the MLS approximation and feasibility of directly imposing the essential boundary conditions for the EFG method. Eng. Anal. Bound. Elem. 2013, 37, 1021−1042.  doi: 10.1016/j.enganabound.2013.03.011

    44. [44]

      Han, J.; Dai, C.; Yu, G.; Lei, Z. Parameterization of COSMO-RS model for ionic liquids. Green Energy Environ. 2018, 3, 247−265.  doi: 10.1016/j.gee.2018.01.001

    45. [45]

      Cao, J. S.; Wei, M. J.; Chen, F. W. Relationship between the bond dipole moment and bond angle of polar molecules. Acta Phys. Chim. Sin. 2016, 32, 1639−1648.  doi: 10.3866/PKU.WHXB201604062

    46. [46]

      Fu, X. M.; Li, Y.; Wang, J. H. A study of the influential factors on the dipole moments of small organic. Comput. Appl. Chem. 2015, 32, 408−412.

    47. [47]

      Zeng, X. L.; Qu, R. J.; Feng, M. B.; Chen, J.; Wang, L. S.; Wang, Z. Y. Photodegradation of polyfluorinated dibenzo-p-dioxins (PFDDs) in organic solvents: experimental and theoretical studies. Environ. Sci. Technol. 2016, 50, 8128−8134.  doi: 10.1021/acs.est.6b02682

    48. [48]

      Liu, H. X.; Shi, J. Q.; Liu, H.; Wang, Z. Y. Improved 3D-QSPR analysis of the predictive octanoleair partition coefficients of hydroxylated and methoxylated polybrominated diphenyl ethers. Atmos. Environ. 2013, 77, 840−845.  doi: 10.1016/j.atmosenv.2013.05.068

  • 加载中
    1. [1]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    2. [2]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    3. [3]

      Lin LiBingjun SunJin SunLin ChenZhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538

    4. [4]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2023.100393

    5. [5]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

Metrics
  • PDF Downloads(18)
  • Abstract views(568)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return