Citation: Jing-Jing HUANG, Dan ZHAO, Guo-Jie YIN. Functionalized Metal-organic Frameworks for White Light Emission and Highly Sensitive Sensing of PA and Fe3+/Al3+[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220303. doi: 10.14102/j.cnki.0254-5861.2011-3304 shu

Functionalized Metal-organic Frameworks for White Light Emission and Highly Sensitive Sensing of PA and Fe3+/Al3+

  • Corresponding author: Guo-Jie YIN, 13523612522@163.com
  • Received Date: 7 July 2021
    Accepted Date: 24 January 2022

    Fund Project: the High-level Talents Initiation Project of Luoyang Institute of Technology 2018BZ17the Pre-research Project of Luoyang Institute of Technology 2018YZ15the Key Scientific Research Project of Higher Education of Henan Province 20B150016the Training Program for Young Backbone Teachers of Higher Education of Henan Province 2020GGJS243the Science and Technology Project of Henan Province 182102210102the Science and Technology Project of Henan Province 202102210058

Figures(9)

  • Three isomorphic Ln-MOFs [Ln(bcbob)(H2O)(DMF)] (Ln = Tb for 1, Eu for 2, Gd for 3; DMF = N, N-dimethylformamide) have been constructed from a semi-rigid V-shaped organic linker 3, 5-bis((4′-carboxyl-benzyl)oxy)benzoilate acid (H3bcbob) under solvothermal conditions. X-ray single-crystal diffraction analysis reveals that they exhibit a two-dimensional (2D) layered structure. Compounds 1~3 show the characteristic green and red emissions of Ln3+ and blue emission arising from the organic ligand, respectively. Based on their photoluminescence properties, the white-light emitting materials 4 and 5 with longer fluorescence lifetime (ms grade) and higher quantum yield (e.g. 40.61% for 4) are fabricated. Remarkably, 1 exhibits good sensing ability on nitroaromatic compounds, especially for picric acid (PA). In addition, 1 is still a highly selective sensing material for Fe3+ and Al3+.
  • 加载中
    1. [1]

      Hu, Z.; Deibert, B. J.; Li J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840.  doi: 10.1039/C4CS00010B

    2. [2]

      Song, X. Z.; Song, S. Y.; Zhao, S. N.; Hao, Z. M.; Zhu, M.; Meng, X.; Wu, L. L.; Zhang, H. J. Single-crystal-to-single-crystal transformation of a europium(Ⅲ) metal-organic framework producing a multi-responsive luminescent sensor. Adv. Funct. Mater. 2014, 24, 4034−4041.  doi: 10.1002/adfm.201303986

    3. [3]

      Arici, M. Luminescent 2D + 2D → 2D interpenetrated Zn(Ⅱ)-coordination polymer based on reduced Schiff base tricarboxylic acid and bis(imidazole) ligand for detection of picric acid and Fe3+ ions. Cryst. Growth Des. 2017, 17, 5499–5505.  doi: 10.1021/acs.cgd.7b01024

    4. [4]

      Ju, Z.; Yan, W.; Gao, X.; Shi, Z.; Wang, T.; Zheng, H. Syntheses, characterization, and luminescence properties of four metal-organic frameworks based on a linear-shaped rigid pyridine ligand. Cryst. Growth Des. 2016, 16, 2496–2503.  doi: 10.1021/acs.cgd.5b00681

    5. [5]

      Tian, D.; Li, Y.; Chen, R. Y.; Chang, Z.; Wang, G. Y.; Bu, X. H. A luminescent metal-organic framework demonstrating ideal detection ability for nitroaromatic explosives. J. Mater. Chem. A 2014, 2, 1465–1470.  doi: 10.1039/C3TA13983B

    6. [6]

      Dang, L.; Li, T. T.; Cui, Z.; Sui, D.; Ma, L. F.; Jin, G. X. Selective construction and stability studies of a molecular trefoil knot and Solomon link. Dalton Trans. 2021, 50, 16984–16989.  doi: 10.1039/D1DT02755G

    7. [7]

      Dang, L.; Li, T. T.; Zhao, C. C.; Zhang, T. T.; Ye, X. Y.; Sun, X. T.; Wang, H. R.; Ma, L. F. Supramolecular Rh6 catalytic system promoting directed [4+4] cycloaddition reaction of anthracene under UV irradiation. J Solid State Chem. 2022, 306, 122785–122792.  doi: 10.1016/j.jssc.2021.122785

    8. [8]

      Hilal, D.; Hasan, C. G.; Gokay, A.; Gokhan, O. A.; Omer, F. A.; Cigdem, A.; Ilknur, E.; Seda, K. Effect of metal-organic framework (MOF) database selection on the assessment of gas storage and separation potentials of MOFs. Angew. Chem. Int. Ed. 2021, 60, 7828–7837.  doi: 10.1002/anie.202015250

    9. [9]

      Rogacka, J.; Seremak, A.; Luna-Triguero, A.; Formalik, F.; Matito-Martos, I.; Firlej, L.; Calero, S.; Kuchta, B. High-throughput screening of metal-organic frameworks for CO2 and CH4 separation in the presence of water. Chem. Eng. J. 2021, 403, 126392–126402.  doi: 10.1016/j.cej.2020.126392

    10. [10]

      Daglar, H.; Keskin, S. Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations. Coord. Chem. Rev. 2020, 422, 213470–213490.  doi: 10.1016/j.ccr.2020.213470

    11. [11]

      Fan, W.; Wang, X.; Xu, B.; Wang, Y.; Liu, D.; Zhang, M.; Shang, Y.; Dai, F.; Zhang, L.; Sun D. Amino-functionalized MOFs with high physicochemical stability for efficient gas storage/separation, dye adsorption and catalytic performance. J. Mater. Chem. A 2018, 6, 24486–24495.  doi: 10.1039/C8TA07839D

    12. [12]

      Erucar, I.; Keskin, S. Unlocking the effect of H2O on CO2 separation performance of promising MOFs using atomically detailed simulations. Ind. Eng. Chem. Res. 2020, 59, 3134–3152.

    13. [13]

      Sushil, K.; Siddhant, S.; Arun, K.; Pramod, K. Recognition, mechanistic investigation and applications for the detection of biorelevant Cu2+/Fe2+/Fe3+ ions by ruthenium(Ⅱ)-polypyridyl based fluorescent sensors. Dalton Trans. 2021, 50, 2705–2721.  doi: 10.1039/D0DT03488F

    14. [14]

      Wu, S.; Min, H.; Shi, W.; Cheng, P. Multicenter metal-organic framework-based ratiometric fluorescent sensors. Adv. Mater. 2019, 1805871.

    15. [15]

      Jin, J.; Xue, J.; Liu, Y.; Yang, G.; Wang, Y. Recent progresses in luminescent metal-organic frameworks (LMOFs) as sensors for the detection of anions and cations in aqueous solution. Dalton Trans. 2021, 50, 1950–1972.  doi: 10.1039/D0DT03930F

    16. [16]

      Yang, M. Q.; Zhou, C. P.; Chen, Y.; Li, J. J.; Zeng, C. H.; Zhong, S. Highly sensitive and selective sensing of CH3Hg+ via oscillation effect in Eu-cluster. Sens. Actuators B 2017, 248, 589−596.  doi: 10.1016/j.snb.2017.03.131

    17. [17]

      Li, Y.; Li, S.; Yan, P.; Wang, X.; Yao, X.; An, G.; Li, G. Luminescence-colour-changing sensing of Mn2+ and Ag+ ions based on a white-light-emitting lanthanide coordination polymer. Chem. Commun. 2017, 53, 5067–5070.  doi: 10.1039/C7CC00258K

    18. [18]

      Wu, S.; Lin, Y.; Liu, J.; Shi, W.; Yang, G.; Cheng, P. Rapid detection of the biomarkers for carcinoid tumors by a water stable luminescent lanthanide metal-organic framework sensor. Adv. Funct. Mater. 2018, 1707169.

    19. [19]

      Sun, Z.; Sun, J.; Xi, L.; Xie, J.; Wang, X.; Ma, Y.; Li, L. Two novel lanthanide metal-organic frameworks: selective luminescent sensing for nitrobenzene, Cu2+, and MnO4-. Cryst. Growth Des. 2020, 20, 5225–5234.  doi: 10.1021/acs.cgd.0c00432

    20. [20]

      Protap, B.; Parthasarathi, D. Anchoring drugs to a zinc(Ⅱ) coordination polymer network: exploiting structural rationale toward the design of metallogels for drug-delivery applications. Inorg. Chem. 2021, 60, 3218–3231.  doi: 10.1021/acs.inorgchem.0c03550

    21. [21]

      Sun, X.; He, G.; Xiong, C.; Wang, C.; Lian, X.; Hu, L.; Li, Z. One-pot fabrication of hollow porphyrinic MOF nanoparticles with ultrahigh drug loading toward controlled delivery and synergistic cancer therapy. ACS Appl. Mater. Interfaces 2021, 13, 3679–3693.  doi: 10.1021/acsami.0c20617

    22. [22]

      Liu, X.; Liang, T.; Zhang, R.; Ding, Q.; Wu, S.; Li, C.; Lin, Y. Iron-based metal-organic frameworks in drug delivery and biomedicine. ACS Appl. Mater. Interfaces 2021, 13, 9643–9655.  doi: 10.1021/acsami.0c21486

    23. [23]

      Lawson, H. D.; Walton, S. P.; Chan, C. Metal-organic frameworks for drug delivery: a design perspective. ACS Appl. Mater. Interfaces 2021, 13, 7004–7020.  doi: 10.1021/acsami.1c01089

    24. [24]

      Wang, L.; Zheng, M.; Xie, Z. Nanoscale metal-organic frameworks for drug delivery: a conventional platform with new promise. J. Mater. Chem. B 2018, 6, 707–717.  doi: 10.1039/C7TB02970E

    25. [25]

      Guo, T.; Mo, K.; Zhang, N.; Xiao, L.; Liu, W.; Wen, L. Embedded homogeneous ultra-fine Pd nanoparticles within MOF ultra-thin nanosheets for heterogeneous catalysis. Dalton Trans. 2021, 50, 1774–1779.  doi: 10.1039/D0DT03877F

    26. [26]

      Das, A.; Anbu, N.; Mostakim, S. K.; Dhakshinamoorthy, A.; Biswas, S. A functionalized UiO-66 MOF for turn-on fluorescence sensing of superoxide in water and efficient catalysis for Knoevenagel condensation. Dalton Trans. 2019, 48, 17371–17380.  doi: 10.1039/C9DT03638E

    27. [27]

      Zhang, L.; Yuan, S.; Fan, W.; Pang, J.; Li, F.; Guo, B.; Zhang, P.; Sun, D.; Zhou, H. Cooperative sieving and functionalization of Zr metal-organic frameworks through insertion and post-modification of auxiliary linkers. ACS Appl. Mater. Interfaces 2019, 11, 22390–22397.  doi: 10.1021/acsami.9b05091

    28. [28]

      Hou, S.; Dong, J.; Zhao, B. Formation of C–X bonds in CO2 chemical fixation catalyzed by metal-organic frameworks. Adv. Mater. 2020, 32, 1806163.  doi: 10.1002/adma.201806163

    29. [29]

      Lu, B.; Yang, J.; Liu, Y.; Ma, J. A polyoxovanadate-resorcinarene-based porous metal-organic framework as an efficient multifunctional catalyst for the cycloaddition of CO2 with epoxides and the selective oxidation of sulfides. Inorg. Chem. 2017, 56, 11710–11720.  doi: 10.1021/acs.inorgchem.7b01685

    30. [30]

      Li, T. T.; Dang, L. L.; Zhao, C. C.; Lv, Z. Y.; Yang, X. G.; Zhao, Y.; Zhang, S. H. A self-sensitized Co(Ⅱ)-MOF for efficient visible-light-driven hydrogen evolution without additional cocatalysts. J. Solid State Chem. 2021, 304, 122609–122614.  doi: 10.1016/j.jssc.2021.122609

    31. [31]

      Xu, L.; Wang, Z.; Wang, R.; Wang, L.; He, X.; Jiang, H.; Tang, H.; Cao, D.; Tang, Z. A conjugated polymeric supramolecular network with aggregation-induced emission enhancement: an efficient light-harvesting system with an ultrahigh antenna effective. Angew. Chem. Int. Ed. 2020, 59, 9908–9913.  doi: 10.1002/anie.201907678

    32. [32]

      Sun, Z.; Hu, P.; Ma, Y.; Li, L. Lanthanide organic frameworks for luminescence sensing of nitrobenzene and nitrophenol with high selectivity. Dyes Pigm. 2017, 143, 10–17.  doi: 10.1016/j.dyepig.2017.04.015

    33. [33]

      Liu, J.; Sun, W.; Liu, Z. White-light emitting materials with tunable luminescence based on steady Eu(Ⅲ) doping of Tb(Ⅲ) metal-organic frameworks. RSC Adv. 2016, 6, 25689–25694.  doi: 10.1039/C6RA01931E

    34. [34]

      Yang, Y.; Chen, L.; Jiang, F.; Yu, M.; Wan, X.; Zhang, B.; Hong, M. A family of doped lanthanide metal-organic frameworks for wide-range temperature sensing and tunable white light emission. J. Mater. Chem. C 2017, 5, 1981–1989.  doi: 10.1039/C6TC05316E

    35. [35]

      Huang, J. J.; Yu, J. H.; Bai, F. Q.; Xu, J. Q. White-light-emitting materials and highly sensitive detection of Fe3+ and polychlorinated benzenes based on Ln-metal-organic frameworks. Cryst. Growth Des. 2018, 18, 5353–5364.  doi: 10.1021/acs.cgd.8b00773

    36. [36]

      Sheldrick, G. M. A. Short history of Shelx. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122.  doi: 10.1107/S0108767307043930

    37. [37]

      Zhong, F.; Zhang, X.; Zheng, C.; Xu, H.; Gao, J.; Xu, S. A fluorescent titanium-based metal-organic framework sensor for nitroaromatics and nanomolar Fe3+ detection. J. Solid State Chem. 2020, 288, 121391–121397.  doi: 10.1016/j.jssc.2020.121391

    38. [38]

      Wang, X. Q.; Tang, J.; Ma, X.; Wu, D.; Yang, J. A water-stable zinc(Ⅱ)-organic framework as an "on-off-on" fluorescent sensor for detection of Fe3+ and reduced glutathione. CrystEngComm 2021, 23, 1243–1250.  doi: 10.1039/D0CE01741H

    39. [39]

      Zhang, J.; Ren, S.; Xia, H.; Jia, W.; Zhang, C. AIE-ligand-based luminescent Cd(Ⅱ)-organic framework as the first "turn-on" Fe3+ sensor in aqueous medium. J. Mater. Chem. C 2020, 8, 1427–1432.  doi: 10.1039/C9TC05140F

    40. [40]

      Tang, Q.; Liu, S.; Liu, Y.; Miao, J.; Li, S.; Zhang, L.; Shi, Z.; Zheng, Z. Cation sensing by a luminescent metal-organic framework with multiple lewis basic sites. Inorg. Chem. 2013, 52, 2799–2801.  doi: 10.1021/ic400029p

    41. [41]

      Chen, B.; Wang, L.; Xiao, Y.; Fronczek, F. R.; Xue, M.; Cui, Y.; Qian, G. A Luminescent metal-organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew. Chem. Int. Ed. 2009, 48, 500–503.  doi: 10.1002/anie.200805101

    42. [42]

      Cao, L. H.; Shi, F.; Zhang, W. M.; Zang, S. Q.; Mak, T. C. Selective sensing of Fe3+ and Al3+ ions and detection of 2, 4, 6-trinitrophenol by a water-stable terbium-based metal-organic framework. Chem. Eur. J. 2015, 21, 15705–15712.  doi: 10.1002/chem.201501162

    43. [43]

      Dang, S.; Ma, E.; Sun, Z. M.; Zhang, H. A layer-structured Eu-MOF as a highly selective fluorescent probe for Fe3+ detection through a cation-exchange approach. J. Mater. Chem. 2012, 22, 16920–16926.  doi: 10.1039/c2jm32661b

    44. [44]

      Zhou, Y.; Chen, H. H.; Yan B. An Eu3+ post-functionalized nanosized metal-organic framework for cation exchange-based Fe3+-sensing in an aqueous environment. J. Mater. Chem. A 2014, 2, 13691–13697.  doi: 10.1039/C4TA01297F

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    3. [3]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    4. [4]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    5. [5]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    6. [6]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    10. [10]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    11. [11]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    12. [12]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    13. [13]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    14. [14]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    15. [15]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    16. [16]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    17. [17]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    18. [18]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    19. [19]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    20. [20]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

Metrics
  • PDF Downloads(3)
  • Abstract views(386)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return