Citation: Han ZHANG, Xiang LI, Yaseen MUHAMMAD, Hui-Feng XIE, Yi-Han ZANG, Ming-Lu FANG, Shao-Jie LIU, Hao WANG. Synthesis, Crystal Structure and Fluorescent Properties of a 1D Europium Coordination Polymer with 2,5-Furandicarboxylic Acid[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220309. doi: 10.14102/j.cnki.0254-5861.2011-3303 shu

Synthesis, Crystal Structure and Fluorescent Properties of a 1D Europium Coordination Polymer with 2,5-Furandicarboxylic Acid

  • Corresponding author: Hao WANG, wangh@bipt.edu.cn
  • Received Date: 6 July 2021
    Accepted Date: 23 August 2021

    Fund Project: the High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan CIT & TCD201904044URT program of Beijing Institute of Petrochemical Technology 2021J00003

Figures(9)

  • By using solvothermal method, a one-dimensional chain compound [KEu2(FDCA)3(H2O)9·0.5(FDCA)] (1) was synthesized. Single-crystal X-ray diffraction data reveal that 1 crystallizes in monoclinic system, space group P21/n with a = 12.1996(1), b = 18.6454(2), c = 17.7123(2) Å, β = 98.8460(10)°, Dc = 1.753 g/cm3, Z = 2, V = 3981.03(7) Å3, R = 0.0544 and wR = 0.1511 for 7886 observed reflections with I > 2σ(I). In 1, three FDCA2– ligands construct a "23-crown-9-like" structure as the second building units (SBUs) to further form an infinite 1D chain. Meanwhile, the fluorescent result reveals that compound 1 can selectively and sensitively sense Fe3+ by the fluorescence quenching.
  • 加载中
    1. [1]

      Lv, R.; Li, H.; Su, J.; Fu, X.; Yang, B. Y.; Gu, W.; Liu, X. Zinc metal-organic framework for selective detection and differentiation of Fe(III) and Cr(VI) ions in aqueous solution. Inorg. Chem. 2017, 56, 12348–12356.  doi: 10.1021/acs.inorgchem.7b01822

    2. [2]

      Yao, S. L.; Xiong, Y. C.; Tian, X. M.; Liu, S. J.; Xu, H.; Zheng, T. F.; Chen, J. L.; Wen, H. R. A multifunctional benzothiadiazole-based fluorescence sensor for Al3+, Cr3+ and Fe3+. CrystEngComm. 2021, 23, 1898–1905.  doi: 10.1039/D1CE00060H

    3. [3]

      Zheng, Y. T.; Wang, H. L.; Jiang, J. Z. A porous tetraphenylethylene-based polymer for fast-response fluorescence sensing of Fe(III) ion and nitrobenzene. Dyes. Pigm. 2020, 173, 107929–8.  doi: 10.1016/j.dyepig.2019.107929

    4. [4]

      Wu, N.; Guo, H.; Wang, X.; Sun, L.; Zhang, T.; Peng, L.; Yang, W. A water-stable lanthanide-MOF as a highly sensitive and selective luminescence sensor for detection of Fe3+ and benzaldehyde. Colloids Surf. A 2020, 616, 126093–7.

    5. [5]

      Yao, Q. X.; Tian, M. M.; Wang, Y.; Meng, Y. J.; Wang, J.; Yao, Q. Y.; Zhou, X.; Yang, H.; Wang, H. W.; Li, Y. W.; Zhang, J. A robust, water-stable, and multifunctional praseodymium-organic framework showing permanent porosity, CO2 adsorption properties, and selective sensing of Fe3+ ion. Chin. J. Struct. Chem. 2020, 39, 1862–1870.

    6. [6]

      Li, G.; Wang, T.; Zhou, S. H.; Wang, J.; Lv, H.; Han, M. L.; Singh, D. P.; Kumar, A.; Jin, J. C. New highly luminescent 3D Tb(III)-MOF as selective sensor for antibiotics. Inorg. Chem. Commun. 2021, 130, 108756–6.  doi: 10.1016/j.inoche.2021.108756

    7. [7]

      Hao, J. N.; Yan, B. A water-stable lanthanide-functionalized MOF as a highly selective and sensitive fluorescent probe for Cd2+. Chem. Commun. 2015, 51, 7737–7740.  doi: 10.1039/C5CC01430A

    8. [8]

      Chen, D. D.; Yi, X. H.; Wang, C. C. Preparation of metal-organic frameworks and their composites using mechanochemical methods. Chin. J. Inorg. Chem. 2020, 36, 1805–1821.

    9. [9]

      Cho, W.; Lee, H. J. Choi. Dual changes in conformation and optical properties of fluorophores within a metal-organic framework during framework construction and associated sensing event. J. Am. Chem. Soc. 2014, 136, 12201–12204.  doi: 10.1021/ja504204d

    10. [10]

      Kong, L. J.; Liu, M.; Huang, H.; Xu, Y. H.; Bu, X. H. Metal/covalent-organic framework based cathodes for metal-ion batteries. Adv. Energy Mater. 2021, 2100172–26.

    11. [11]

      Yu, M. H.; Liu, X. T.; Space, B.; Chang, Z.; Bu, X. H. Metal-organic materials with triazine-based ligands: from structures to properties and applications. Coord. Chem. Rev. 2021, 427, 213518–45.  doi: 10.1016/j.ccr.2020.213518

    12. [12]

      Xu, G. J.; Meng, Z. S.; Guo, X. J.; Zhu, H. W.; Deng, K. M.; Xiao, C. Y.; Liu, Y. Z. Molecular simulations on CO2 adsorption and adsorptive separation in fullerene impregnated MOF-177, MOF-180 and MOF-200. Comput. Mater. Sci. 2019, 168, 58–64.  doi: 10.1016/j.commatsci.2019.05.039

    13. [13]

      Feng, X.; Xu, C.; Wang, Z. Q.; Tang, S. F.; Fu, W. J.; Ji, B. M.; Wang, L. Y. Aerobic oxidation of alcohols and the synthesis of benzoxazoles catalyzed by a cuprocupric coordination polymer (Cu+-CP) assisted by TEMPO. Inorg. Chem. 2015, 54, 2088–2090.  doi: 10.1021/ic502884z

    14. [14]

      Wang, C. C.; Wang, X.; Liu, W. The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: a state-of-the-art review. Chem. Eng. J. 2020, 391, 123601–37.  doi: 10.1016/j.cej.2019.123601

    15. [15]

      Lin, C. X.; Chi, B.; Xu, C.; Zhang, C.; Tian, F.; Xu, Z. X.; Li, L.; Whittaker, A. K.; Wang, J. Multifunctional drug carrier on the basis of 3d-4f Fe/La-MOFs for drug delivery and dual-mode imaging. J. Mater. Chem. B 2019, 7, 6612–6622.  doi: 10.1039/C9TB01509D

    16. [16]

      Kumar, M.; Li, L. Q.; Zareba, J. K.; Tashi, L.; Sahoo, S. C.; Nyk, M.; Liu, S. J.; Sheikh, H. N. Lanthanide contraction in action: structural variations in 13 lanthanide(III) thiophene-2,5-dicarboxylate coordination polymers (Ln = La-Lu, except Pm and Tm) featuring magnetocaloric effect, slow magnetic relaxation, and luminescence-lifetime-based thermometry. Cryst. Growth Des. 2020, 20, 6430–6452.  doi: 10.1021/acs.cgd.0c00611

    17. [17]

      Zhu, H.; Li, Y. H.; Xiao, Q. Q.; Cui, G. H. Three luminescent Cd(II) coordination polymers containing aromatic dicarboxylate and flexible bis(benzimidazole) ligands as highly sensitive and selective sensors for detection of Cr2O72- oxoanions in water. Polyhedron 2020, 187, 114648–8.  doi: 10.1016/j.poly.2020.114648

    18. [18]

      Xiao, Q. Q.; Dong, G. Y.; Li, Y. H.; Cui, G. H. Cobalt(II)-based 3D coordination polymer with unusual 4, 4, 4-connected topology as a dual-responsive fluorescent chemosensor for acetylacetone and Cr2O72-. Inorg. Chem. 2019, 58, 15696–15699.  doi: 10.1021/acs.inorgchem.9b02534

    19. [19]

      Wang, H. X.; Feng, X. G.; Bo, X.; Zhou, M.; Guo, L. P. Ni-MOF/crosslinked tubular poly(3, 4-ethylenedioxythiophene) composite as a novel electrocatalyst for effective detection of gallic acid and tinidazole. ChemElectroChem. 2020, 7, 4031–4037.  doi: 10.1002/celc.202000991

    20. [20]

      Ju, P.; Liu, X. C.; Zhang, E. S. A novel 3D Zn-based luminescence metal-organic framework: synthesis, structure and fluorescence enhanced sensing of ammonia vapor in air. Chin. J. Struct. Chem. 2020, 39, 1458–1464.

    21. [21]

      Zhu, L. W.; Zhang, Z. Q.; Jiang, X. H.; Yu, L. M.; Li, X. The syntheses, efficient electromagnetic wave absorption and antibacterial activity properties of novel 3D Ln-MOFs based on maleic hydrazide. J. Mol. Struct. 2020, 1280, 127826–8.

    22. [22]

      Lv, X. L.; Feng, L.; Wang, K. Y.; Xie, L. H.; He, T.; Wu, W.; Li, J. R.; Zhou, H. C. A series of mesoporous rare-earth metal-organic frameworks constructed from organic secondary building units. Angew. Chem. Int. Ed. 2021, 60, 2053–2057.  doi: 10.1002/anie.202011653

    23. [23]

      Yang, Q. Y.; Pan, M.; Wei, S. C.; Li, K.; Du, B. B.; Su, C. Y. Linear dependence of photoluminescence in mixed Ln-MOFs for color tunability and barcode application. Inorg. Chem. 2015, 54, 5707–5716.  doi: 10.1021/acs.inorgchem.5b00271

    24. [24]

      Gao, Y. X.; Yu, G.; Liu, K.; Wang, B. Luminescent mixed-crystal Ln-MOF thin film for the recognition and detection of pharmaceuticals. Sens. Actuators B Chem. 2018, 257, 931–935.  doi: 10.1016/j.snb.2017.10.180

    25. [25]

      Liu, A. J.; Xu, F.; Han, S. D.; Pan, J.; Wang, G. M. Mixed-ligand strategy for the construction of photochromic metal-organic frameworks driven by electron-transfer between nonphotoactive units. Cryst. Growth Des. 2020, 20, 7350–7355.  doi: 10.1021/acs.cgd.0c01018

    26. [26]

      Cui, Y. J.; Chen, B. L.; Qian, G. D. Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord. Chem. Rev. 2014, 76–86.

    27. [27]

      Feng, X.; Li, R. F.; Wang, L. Y.; Ng, S. W.; Qin, G. Z.; Ma, L. F. A series of homonuclear lanthanide coordination polymers based on a fluorescent conjugated ligand: syntheses, luminescence and sensor for pollutant chromate anion. CrystEngComm. 2015, 17, 7878–7887.  doi: 10.1039/C5CE01454A

    28. [28]

      Lv, X. L.; Feng, L.; Xie, L. H.; He, T.; Wu, W.; Wang, K. Y.; Si, G. R.; Wang, B.; Li, J. R.; Zhou, H. C. Linker desymmetrization: access to a series of rare-earth tetracarboxylate frameworks with eight-connected hexanuclear nodes. J. Am. Chem. Soc. 2021, 143, 2784–2791.  doi: 10.1021/jacs.0c11546

    29. [29]

      Li, B.; Wen, H. M.; Cui, Y. J.; Qian, G. D.; Chen, B. L. Multifunctional lanthanide coordination polymers. Prog. Polym. Sci. 2015, 48, 40–84.  doi: 10.1016/j.progpolymsci.2015.04.008

    30. [30]

      Li, R. F.; Zhu, X. X.; Liu, X. F.; Feng, X.; Wang, L. Y. Synthesis, crystal structure and fluorescence properties of a terbium(III) complex with biphenyl-2, 3, 3΄, 5΄-tetracarboxylic acid. Chin. J. Struct. Chem. 2019, 38, 985–990.

    31. [31]

      Han, M. L.; Xu, G. W.; Li, D. S.; Azofra, L. M.; Zhao, J.; Chen, B.; Sun, C. A Terbium-organic framework material for highly sensitive sensing of Fe3+ in aqueous and biological systems: experimental studies and theoretical analysis. ChemistrySelect. 2016, 1, 3555–3561.  doi: 10.1002/slct.201600775

    32. [32]

      Tang, Y. Y.; Wang, C. J.; Chen, S.; Dai, H. Y. A terbium(III) organic framework as a fluorescent probe for selectively sensing of organic small molecules and metal ions especially nitrobenzene and Fe3+. J. Coord. Chem. 2017, 70, 3996–4007.  doi: 10.1080/00958972.2017.1413490

    33. [33]

      Yang, D.; Lu, L.; Feng, S.; Zhu, M. First Ln-MOF as a trifunctional luminescent probe for the efficient sensing of aspartic acid, Fe3+ and DMSO. Dalton Trans. 2020, 49, 7514–7524.  doi: 10.1039/D0DT00938E

    34. [34]

      Xu, X. Y.; Yan, B. Eu(III)-functionalized MIL-124 as fluorescent probe for highly selectively sensing ions and organic small molecules especially for Fe(III) and Fe(II).ACS. Appl. Mater. Inter. 2015, 7, 721–729.  doi: 10.1021/am5070409

    35. [35]

      Wang, J.; Wang, J.; Li, Y.; Jiang, M.; Zhang, L.; Wu, P. A europium(III)-based metal-organic framework as a naked-eye and fast response luminescence sensor for acetone and ferric iron. New. J. Chem. 2016, 40, 8600–8606.  doi: 10.1039/C6NJ02163H

    36. [36]

      Kang, Y.; Zheng, X. J.; Jin, L. P. A microscale multi-functional metal-organic framework as a fluorescence chemosensor for Fe(III), Al(III) and 2-hydroxy-1-naphthaldehyde. J. Colloid Interf. Sci. 2016, 471, 1–6.  doi: 10.1016/j.jcis.2016.03.008

    37. [37]

      Wang, B.; Yang, Q.; Guo, C.; Sun, Y.; Xie, L. H.; Li, J. R. Stable Zr(IV)-based metal-organic frameworks with predesigned functionalized ligands for highly selective detection of Fe(III) ions in water. ACS. Appl. Mater. Inter. 2017, 9, 10286–10295.  doi: 10.1021/acsami.7b00918

    38. [38]

      Gu, J. Z.; Cai, Y.; Liu, Y.; Liang, X. X.; Kirillov, A. M. New lanthanide 2D coordination polymers constructed from a flexible ether-bridged tricarboxylate block: synthesis, structures and luminescence sensing. Inorg. Chim. Acta 2018, 469, 98–104.  doi: 10.1016/j.ica.2017.08.054

  • 加载中
    1. [1]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    2. [2]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    3. [3]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    4. [4]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    5. [5]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    6. [6]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    7. [7]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    8. [8]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    9. [9]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    10. [10]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    11. [11]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    12. [12]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    13. [13]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    14. [14]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    15. [15]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    16. [16]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    17. [17]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    18. [18]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    19. [19]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    20. [20]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

Metrics
  • PDF Downloads(3)
  • Abstract views(459)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return