Citation: Qian ZHANG, Yan-Feng CUI, Xia-Mei ZHANG, Ya-Hong LI, Jin-Lei YAO. Manganese(Ⅱ) and Copper(Ⅰ) Compounds Based on Two Derivatives of Imidazo[1, 5-a]pyridine: Synthesis, Structures, Magnetic Properties, and Catalytic Activity[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220314. doi: 10.14102/j.cnki.0254-5861.2011-3296 shu

Manganese(Ⅱ) and Copper(Ⅰ) Compounds Based on Two Derivatives of Imidazo[1, 5-a]pyridine: Synthesis, Structures, Magnetic Properties, and Catalytic Activity

  • Corresponding author: Ya-Hong LI, liyahong@suda.edu.cn Jin-Lei YAO, jlyao@usts.edu.cn
  • Received Date: 25 June 2021
    Accepted Date: 12 October 2021

    Fund Project: the National Natural Science Foundation of China 21772140the National Natural Science Foundation of China 21771136Natural Science Foundation of Jiangsu Province BK20171213the Project of Scientific and Technologic Infrastructure of Suzhou SZS201905

Figures(4)

  • The utilization of 2, 6-bis(imidazo[1, 5-a]pyridin-3-yl)pyridine (bipp) and 3-(pyridin-2-yl)imidazo[1, 5-a]pyridine (pip) in the compounds of manganese(Ⅱ) and copper(Ⅰ) ions is presented. Two complexes, [Mn(bipp)(SO4)(H2O)]n (1) and [Cu(pip)2]ClO4 (2), were prepared with different characteristics in structure. Compound 1 exhibits a one-dimensional chain topology, and 2 is a homoleptic Cu(Ⅰ) complex. The dc magnetic susceptibility investigations reveal the antiferromagnetic (AF) Mn…Mn interactions in complex 1. The catalytic activity of compound 2 toward ketalization reactions was studied. Complex 2 exhibits high activity for the ketalization transformations of aliphatic ketones.
  • 加载中
    1. [1]

      Rajnák, C.; Titiš, J.; Moncol, J.; Mičová, R.; Boča, R. Field-induced slow magnetic relaxation in a mononuclear manganese(Ⅱ) complex. Inorg. Chem. 2019, 58, 991−994.  doi: 10.1021/acs.inorgchem.8b02675

    2. [2]

      Benniston, A. C.; Melnic, S.; Turta, C.; Arauzo, A. B.; Bartolomé, J.; Bartolomé, E.; Harringtonf, R. W.; Probertf, M. R. Preparation and properties of a calcium(Ⅱ)-based molecular chain decorated with manganese(Ⅱ) butterfly-like complexes. Dalton Trans. 2014, 43, 13349−13357.  doi: 10.1039/C4DT01518E

    3. [3]

      Baron, V.; Gillon, B.; Sletten, J.; Mathoniere, C.; Codjovi, E.; Kahn, O. Interchain interactions and three-dimensional magnetic ordering in Mn(Ⅱ) Cu(Ⅱ) chain compounds; crystal structure and metamagnetic properties of MnCu(pbaOH)(H2O)3·2H2O, with pbaOH = 2-hydroxo-1, 3-propylenebis (oxamato). Inorg. Chim. Acta 1995, 235, 69−76.  doi: 10.1016/0020-1693(95)90047-A

    4. [4]

      Uchida, K.; Cosquer, G.; Sugisaki, K.; Matsuoka, H.; Sato, K.; Breedlove, B. K.; Yamashita, M. Isostructural M(Ⅱ) complexes (M = Mn, Fe, Co) with field-induced slow magnetic relaxation for Mn and Co complexes. Dalton Trans. 2019, 48, 12023−12030.  doi: 10.1039/C8DT02150C

    5. [5]

      Yang, E. C.; Chang, Y. Y.; Huang, S. Y.; Hong, L. X.; Lee, G. H.; Sheu, H. S.; Chang, C. K. Novel structures and magnetic properties of two [Mn2] complexes with 2, ​4-​di-​2-​pyridyl-​2, ​4-​pentanediol as the ligand. Magnetochemistry 2019, 5, 43.  doi: 10.3390/magnetochemistry5030043

    6. [6]

      Yu, S. B.; Lippard, S. J.; Shweky, I.; Bino, A. Dinuclear manganese(Ⅱ) complexes with water and carboxylate bridges. Inorg. Chem. 1992, 31, 3502–3504.  doi: 10.1021/ic00043a004

    7. [7]

      Zhang, S. L.; Li, S. S.; Zeng, S. Y.; Shi, Y.; Wang, D. Q.; Chen, L. Slow magnetic relaxation in O–Se–O bridged manganese(Ⅲ) Schiff base complexes. New J. Chem. 2020, 44, 2408–2413.  doi: 10.1039/C9NJ05837K

    8. [8]

      Bagaia, R.; Christou, G. The Drosophila of single-molecule magnetism: [Mn12O12(O2CR)16(H2O)4]. Chem. Soc. Rev. 2009, 38, 1011–1026.  doi: 10.1039/b811963e

    9. [9]

      Su, F.; Zhou, C. Y.; Han, C.; Wu, L. T.; Wu, X.; Sun, L.; Su, J.; Feng, S. S; Lu, L. P.; Zhu, M. L. Binuclear Mn2+ complexes of a biphenyltetracarboxylic acid with variable N-​donor ligands: syntheses, structures, and magnetic properties. Cystectomy 2018, 20, 1818–1831.

    10. [10]

      Akiyama, H., Kato, M.; Sasaki, S.; Tasaki, M.; Asao, E.; Kajikawa, M. Synthesis, and magnetic properties of a binuclear manganese(Ⅱ) complex with two manganese(Ⅱ) ions of C2-twisted octahedral geometry. Polyhedron 2016, 111, 32–37.  doi: 10.1016/j.poly.2016.03.005

    11. [11]

      Jing, Y.; Zhang, X. M.; Cui, Y. F.; Li, D. W.; Sun, H.; Ge, Y.; Li, Y. H. Two copper complexes based on derivatives of imidazo[1, 5-a]pyridine: syntheses, structures, and catalytic properties. Chin. J. Struct. Chem. 2020, 39, 1057–1062.

    12. [12]

      Chan, C. K.; Tsai, Y. L.; Chang, M. Y. CuI mediated one-pot cycloacetalization/ketalization of o-carbonyl allylbenzenes: synthesis of benzobicyclo[3.2.1]octane core. Org. Lett. 2017, 19, 1870−1873.  doi: 10.1021/acs.orglett.7b00630

    13. [13]

      Yang, H.; Liu, Y. L.; Hu D. D. Syntheses, structures, and catalytic activities of copper(Ⅰ) complexes with the ligand 2(4, 5-diphenyl-1H-imidazol-2-yl)­pyridine. Z. Anorg. Allg. Chem. 2014, 640, 394–397.  doi: 10.1002/zaac.201300223

    14. [14]

      Han, Z. P.; Li, Y. H. Solvothermal synthesis, structure and catalytic activity of a mixed-valence CuI/CuII complex with 1-D chain structure. Inorg. Chem. Commun. 2012, 22, 73–76.  doi: 10.1016/j.inoche.2012.05.023

    15. [15]

      Tan, X.; Li, L.; Zhang, J. Y.; Han, X. R.; Jiang, L.; Li, F. W.; Su, C. Y. Three-dimensional phosphine metal-organic frameworks assembled from Cu(Ⅰ) and pyridyl diphosphine. Chem. Mater. 2012, 24, 480–485.  doi: 10.1021/cm202608f

    16. [16]

      Fan, W. T.; Yang, X. P.; Lv, H. P.; Wang, X. W.; Wang, Z. Chiral binaphthyl box-copper-catalyzed enantioselective tandem michael-ketalization annulations for optically active aryl and heteroaryl fused bicyclicnonanes. Org. Lett. 2020, 22, 3936−3941.  doi: 10.1021/acs.orglett.0c01221

    17. [17]

      Ma, H. X.; Du, J.; Zhu, Z. M.; Lu, T.; Su, F.; Zhang, L. C. Controllable assembly, characterization and catalytic properties of a new strandberg-type organophosphotungstate. Dalton Trans. 2016, 45, 1631–1637.  doi: 10.1039/C5DT04412J

    18. [18]

      Wang, J. P.; Ma, H. X.; Zhang, L. C.; You, W. S.; Zhu, Z. M. Two Strandberg-type organophosphomolybdates: synthesis, crystal structures and catalytic properties. Dalton Trans. 2014, 43, 17172–17176.  doi: 10.1039/C4DT02571G

    19. [19]

      Tao, D. J.; Li, Z. M.; Cheng, Z.; Hu, N.; Chen, X. S. Kinetics study of the ketalization reaction of cyclohexanone with glycol using brønsted acidic ionic liquids as catalysts. Ind. Eng. Chem. Res. 2012, 51, 16263–16269.  doi: 10.1021/ie302089s

    20. [20]

      Liu, J. H.; Wei, X. F.; Yu, Y. L.; Song, J. L.; Wang, X. Li, A.; Liu X. W.; Deng, W. Q. Uniform core-shell titanium phosphate nanospheres with orderly open nanopores: a highly active Brønsted acid catalyst. Chem. Commun. 2010, 46, 1670–1672.  doi: 10.1039/b922100j

    21. [21]

      Deacon, G. B.; Junk, P. C.; Leary, S. G. Novel Heterobimetallic neodymium/calcium 8-quinolinolate complexes prepared directly from the metals. Z. Anorg. Allg. Chem. 2004, 630, 1541–1543.  doi: 10.1002/zaac.200400164

    22. [22]

      Chen, Y. M.; Li, L.; Chen, Z.; Liu, Y. L.; Hu, H. L.; Chen, W. Q.; Liu, W.; Li. Y. H. Metal-mediated controllable creation of secondary, tertiary, and quaternary carbon centers: a powerful strategy for the synthesis of iron, cobalt, and copper complexes with in situ generated substituted 1-pyridineimidazo[1, 5-a]pyridine ligands. Inorg. Chem. 2012, 51, 9705−9713.  doi: 10.1021/ic300949y

    23. [23]

      Chen, Y. M.; Li, L.; Cao, Y. Y.; Wu, J.; Gao, Q.; Li, Y. H. Cu-mediated controllable creation of tertiary and quaternary carbon centers: designed assembly and structures of a new class of copper complexes supported by in situ generated substituted 1-pyridineimidazo[1, 5-a]pyridine ligands. CrystEngComm 2013, 15, 2675−2681.  doi: 10.1039/c3ce00012e

    24. [24]

      Mukherjee, A.; Dhar, S.; Nethaji, M.; Chakravarty, A. R. Ternary iron(Ⅱ) complex with an emissive imidazopyridine arm from Schiff base cyclizations and its oxidative DNA cleavage activity. Dalton Trans. 2005, 349–353.

    25. [25]

      Huq, F.; Abdullah, A.; Chowdhury, A.; Cheng, H.; Tayyem, H.; Beale, P. Studies on the synthesis and characterization, binding with DNA and activity of cis-bis{imidazo(1, 2-a)-pyridine}-dichloroplatinum(Ⅱ). Asian J. Chem. 2006, 18, 1637–1648.

    26. [26]

      Bluhm, M. E.; Ciesielski, M.; Görls, H.; Döring, M. Copper-catalyzed oxidative heterocyclization by atmospheric oxygen. Angew. Chem. Int. Ed. 2002, 41, 2962–2965.  doi: 10.1002/1521-3773(20020816)41:16<2962::AID-ANIE2962>3.0.CO;2-6

    27. [27]

      Deacon, G. B.; Forsyth, C. M.; Junk, P. C.; Kynast, U.; Meyer, G.; Moore, J.; Sierau, J.; Urbatsch, A. Novel rare earth quinolinolate complexes. J. Alloys Compd. 2008, 451, 436–439.  doi: 10.1016/j.jallcom.2007.04.253

    28. [28]

      Guckian, A. L.; Doering, M.; Ciesielski, M.; Walter, O.; Hjelm, J.; O'Boyle, N. M.; Henry, W.; Browne, W. R.; McGarvey, J. J.; Vos, J. G. Assessment of intercomponent interaction in phenylene bridged dinuclear ruthenium(Ⅱ) and osmium(Ⅱ) polypyridyl complexes. Dalton Trans. 2004, 3943–3949.

    29. [29]

      Volpi, G.; Garino, C.; Salassa, L.; Fiedler, J.; Hardcastle, K. I.; Gobetto, R.; Nervi, C. Cationic heteroleptic cyclometalated iridium complexes with 1-pyridylimidazo[1, 5-α]pyridine ligands: exploitation of an efficient intersystem crossing. Chem. Eur. J. 2009, 15, 6415–6427.  doi: 10.1002/chem.200801474

    30. [30]

      Murai, T.; Nagaya, E.; Miyahara, K.; Shibahara, F.; Maruyama, T. Synthesis and characterization of boron complexes of imidazo[1, 5-a]pyridylalkyl alcohols. Chem. Lett. 2013, 42, 828–830.  doi: 10.1246/cl.130274

    31. [31]

      Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution. University of Göttingen Germany 1997.

    32. [32]

      Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures from Diffraction Data. University of Göttingen Germany 1997.

    33. [33]

      Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. The rich stereochemistry of eight-vertex polyhedra: a continuous shape measures study. Chem. Eur. J. 2005, 11, 1479–1494.  doi: 10.1002/chem.200400799

    34. [34]

      Kahn, O. Molecular Magnetism. VCH Publishers, Inc. 1993.

    35. [35]

      Fei, H. H.; Rogow, D. L.; Oliver, S. R. J. Reversible anion exchange and catalytic properties of two cationic metal-organic frameworks based on Cu(Ⅰ) and Ag(Ⅰ). J. Am. Chem. Soc. 2010, 132, 7202−7209.  doi: 10.1021/ja102134c

  • 加载中
    1. [1]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    2. [2]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    3. [3]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    4. [4]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    5. [5]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    6. [6]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    7. [7]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    8. [8]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    9. [9]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    10. [10]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    11. [11]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    12. [12]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    13. [13]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    14. [14]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    15. [15]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    16. [16]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    17. [17]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    18. [18]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    19. [19]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    20. [20]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

Metrics
  • PDF Downloads(3)
  • Abstract views(439)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return