Citation: Dian-Kai ZHANG, Yan-Hong LI, Li-Ping CHANG, Chang-Yu ZI, Yuan-Qin ZHANG, Guo-Cai TIAN, Wen-Bo ZHAO. Construction of the Molecular Structure Model of the Zhaotong Lignite Using Simulation and Experiment Data[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220313. doi: 10.14102/j.cnki.0254-5861.2011-3293 shu

Construction of the Molecular Structure Model of the Zhaotong Lignite Using Simulation and Experiment Data

  • Corresponding author: Yan-Hong LI, liyh_2004@163.com
  • Received Date: 23 June 2021
    Accepted Date: 20 August 2021

    Fund Project: the National Natural Science Foundation of China 21766013Analysis and Testing Foundation of Kunming University of Science and Technology 2020M20192208021

Figures(6)

  • Aiming to better understand the physiochemical properties of lignite, we select Zhaotong lignite as object and adopt simulation and experiment data to construct its molecular structure. Firstly, the important parameters including carbon skeleton, valence state and functional group of the sample are obtained by ultimate analysis, 13C NMR, XPS and Py-GC/MS. Results indicate that the ratio of aromatic carbon and aromatic bridge carbon to surrounding carbon of the sample are 40.32% and 0.14, respectively. Such results imply that the aromatic structure of the sample is dominated by benzene and naphthalene. Moreover, the ratio of aliphatic carbon is 51.55%, and the aliphatic structure is mainly comprised by methyl, methylene, quaternary carbon and oxygen-aliphatic carbon. Oxygen atoms principally exist in ether, carbonyl and carboxyl groups, of which ether accounts for 70.2%. Additionally, the contents of pyridine, pyrrole and quaternary nitrogen are 25.2%, 46.3% and 13.0%, respectively. Based on the aforementioned results, the molecular structure model of Zhaotong lignite is constructed by the method of computer-aided molecular design. Subsequently, the molecular formula of Zhaotong lignite is calculated as C183H211O55N4. Finally, in order to verify the reasonability of the constructed model, the 13C NMR of the molecular structure model is simulated by employing the basis set of GIAO/6-31G at the Gaussian 09 computing platform. These simulated results agree well with the experimental ones, which suggests that the molecular structure model of Zhaotong lignite is accurate and reasonable.
  • 加载中
    1. [1]

      Zhang, Y. Q.; Li, Y. H.; Chang, L. P.; Zi, C. Y.; Liang, G. B.; Zhang, D. F.; Su, Y. A comparative study on the structural features of humic acids extracted from lignites using comprehensive spectral analyses. RSC Adv. 2020, 10, 22002–22009.  doi: 10.1039/D0RA03166F

    2. [2]

      Li, Y. H.; Zhang, Y. Q.; Chang, L. P.; Zi, C. Y.; Liang, G. B.; Zhang, D. F.; Xie, W. Analyses on thermal stability of lignites and its derived humic acids. Energ. Source 2020, 4, 1–12.

    3. [3]

      Mochidai, O.; Okuma, O.; Yoon, S. H. Chemicals from direct coal liquefaction. Chem. Rev. 2014, 114, 481–488.

    4. [4]

      Cong, X. S.; Zong, Z. M.; Zhou, Y.; Li, M.; Wang, W. L.; Li, F. G.; Zhou, J.; Fan, X.; Zhao, Y. P.; Wei, X. Y. Isolation and identification of 3-ethyl-8-methyl-2, 3-dihydro-1H-cyclopenta[a]chrysene from Shengli lignite. Energ. Fuels 2014, 28, 6694–6697.  doi: 10.1021/ef402403y

    5. [5]

      Yang, Z.; Cao, J. P.; Zhao, X. Y.; Ren, X. Y.; Zhu, C.; Feng, X. B.; Wei, X. Y. Enhanced light aromatic yield from lignite pyrolysis by remedying the acid sites of different hierarchical hzsm-5. Energ. Fuels 2019, 12, 12346–12352.

    6. [6]

      Zhang, Z. Q.; Kang, Q. N.; Wei, S.; Yun, T.; Yan, G. C.; Yan, K. F. Large scale molecular model construction of Xishan bituminous coal. Energ. Fuels 2017, 2, 1310–1317.

    7. [7]

      Zhang, Y.; Zhang, X. Q.; Zhong, Q. F.; Hu, S. R.; Mathews, J. P. Structural differences of spontaneous combustion prone inertinite-rich Chinese lignite coals: insights from XRD, solid state 13C NMR, LDIMS, and HRTEM. Energ. Fuels 2019, 5, 4575–4584.

    8. [8]

      Yan, J. C.; Lei, Z. P.; Li, Z. K.; Wang, Z. C.; Ren, S. B.; Kang, S. G.; Wang, X. L.; Shui, H. Molecular structure characterization of low-medium rank coals via XRD, solid state 13C NMR and FTIR spectroscopy. Fuel 2020, 268, 117038.  doi: 10.1016/j.fuel.2020.117038

    9. [9]

      Zhang, D. K.; Li, Y. H.; Zi, C. Y.; Zhang, Y. Q.; Hu, X.; Tian, G. C.; Zhao, W. B. Structural characterization and molecular simulation of Baoqing lignite. ACS Omega 2021, 6, 102881–102887.

    10. [10]

      Kaushik, S.; Pratik, S. D. Quantum chemical perspective of coal molecular modeling: a review. Fuel 2020, 279, 118539.  doi: 10.1016/j.fuel.2020.118539

    11. [11]

      Mathews, J. P.; Chaffee, A. L. The molecular representations of coal – a review. Fuel 2012, 96, 1–14.  doi: 10.1016/j.fuel.2011.11.025

    12. [12]

      Guo, J. J.; Zhu, C.; He, Q. Q.; Wang, X. H.; Feng, L.; Wu, J. J.; Liu, J. T.; Cao, Z. X. Infrared spectra and pyrolysis of selected molecular models of coal: insight from density functional calculations. Chin. J. Struct. Chem. 2013, 6, 863–870.

    13. [13]

      Feng, W.; Gao, H. F.; Wang, G.; Wu, L. L.; Xu, J. Q.; Li, Z. M.; Li, P.; Bai, H. C.; Guo, Q. J. Molecular model and pyrolysis simulation of Zaoquan coal. J. Chem. Ind. Eng. 2019, 70, 1522–1531.

    14. [14]

      Shi, K. Y.; Gui, X. H.; Tao, X. X.; Long, J.; Ji, Y. H. Macromolecular structural unit construction of Fushun nitric-acid-oxidized coal. Energ. Fuels 2015, 29, 3566–3572.  doi: 10.1021/ef502859r

    15. [15]

      Liu, J. X.; Jiang, Y. Z.; Yao, W.; Jiang, X.; Jiang, X. M. Molecular characterization of Henan anthracite coal. Energ. Fuels 2019, 33, 6215–6225.  doi: 10.1021/acs.energyfuels.9b01061

    16. [16]

      Li, Z. K.; Yan, H. L.; Yan, J. C.; Wang, Z. C.; Lei, Z. P.; Ren, S. B.; Shui, H. F. Drying and depolymerization technologies of Zhaotong lignite: a review. Fuel Process. Technol. 2019, 186, 88–98.  doi: 10.1016/j.fuproc.2019.01.002

    17. [17]

      Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241.  doi: 10.1007/s00214-007-0310-x

    18. [18]

      Wolinski, K. H. R.; Hinton, J. F.; Pulay, P. Methods for parallel computation of SCF NMR chemical shifts by GIAO method: efficient integral calculation, multi-Fock algorithm, and pseudodiagonalization. J. Comput. Chem. 2015, 18, 816–825.

    19. [19]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. Gaussian 09[CP]. Wallingford CT: Gaussian Inc. 2009.

    20. [20]

      Mo, Z.; Li, X. X.; Liu, J.; Wang, Z.; Gong, X. M.; Guo, L.; Song, W. L. Pyrolysis of Liulin coal simulated by gpu-based reaxff MD with cheminformatics analysis. Energ. Fuels 2014, 28, 522–534.  doi: 10.1021/ef402140n

    21. [21]

      Wu, L.; Zhu, Y. M.; Wang, G.; Wang, Y.; Liu, Y. Molecular model and reaxff molecular dynamics simulation of coal vitrinite pyrolysis. J. Mol. Model. 2015, 21, 188.  doi: 10.1007/s00894-015-2738-6

    22. [22]

      Li, Z. M.; Wang, Y. M.; Li, P.; Li, H. P.; Bai, H. C.; Guo, Q. J. Macromolecular model construction and quantum chemical calculation of Ningdong Hongshiwan coal. J. Chem. Ind. Eng. 2018. 69, 2208–2146.

    23. [23]

      Xiang, J. H.; Zeng, F. G.; Li, B.; Zhang, L.; Li, M. F.; Liang, H. Z. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation. J. Fuel Chem. Technol. 2013, 41, 391–399.  doi: 10.1016/S1872-5813(13)60022-5

    24. [24]

      Fan, Y.; Hou, Y. C.; Wu, W. Z.; Liu, Z. Y. The generation of benzene carboxylic acids from lignite and the change in structural characteristics of the lignite during oxidation. Fuel 2017, 203, 214–221.  doi: 10.1016/j.fuel.2017.04.096

    25. [25]

      Zhou, X. Y.; Zeng, F. G.; Xiang, J. H.; Deng, X. P.; Xiang, X. H. Macromolecular model construction and molecular simulation of organic matter in Majiliang vitrain. J. Chem. Ind. Eng. 2020, 71, 1802–1811.

    26. [26]

      Liu, F. J.; Wei, X. Y.; Xie, R. L.; Wang, Y. G.; Li, W. T.; Li, Z. K.; Li, P.; Zong, Z. M. Characterization of oxygen-containing species in methanolysis products of the extraction residue from Xianfeng lignite with negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energ. Fuels 2014, 28, 5596–5605.  doi: 10.1021/ef501414g

    27. [27]

      Yang, Z.; Wei, X. Y.; Li, Z. M.; Zhang, M.; Teng, D. G.; Zong, Z. M. Comparative studies on the structural features of soluble portions from thermal dissolution/methanolysis and catalytic hydroconversion of an extraction residue from Heishan lignite. Fuel 2019, 241, 1138–1144.  doi: 10.1016/j.fuel.2018.11.012

    28. [28]

      Phiri, Z.; Everson, R. C.; Neomagus, H. W. J. P.; Wood, B. J. Transformation of nitrogen functional forms and the accompanying chemical-structural properties emanating from pyrolysis of bituminous coals. Appl. Energ. 2018, 146, 414–427.

    29. [29]

      Feng, W.; Li, Z. M.; Gao, H. F.; Wang, Q.; Bai, H. C.; Li, P. Understanding the molecular structure of HSW coal at atomic level: a comprehensive characterization from combined experimental and computational study. Green Energy. Environ. 2021, 6, 150–159.  doi: 10.1016/j.gee.2020.03.013

    30. [30]

      Ma, Y. P.; Xiang, J. H.; Li, M. F.; Zeng, F. G. Macromolecular structural model of the pyridine extracted residue of vitrain from No. 3 coalbed, Liulin and molecular simulation. J. Fuel Chem. Technol. 2012, 40, 1300–1308.

    31. [31]

      Chang, H. Z.; Wang, C. G.; Zeng, F. G.; Li, J.; Li, W. Y.; Xie, K. C. XPS comparative analysis of coal macerals with different reducibility. J. Fuel Chem. Technol. 2006, 34, 389–394.

    32. [32]

      Zhang, A. H.; Tao, M. X.; Liu, P. Y.; Chen, X. R.; Li, D. D. Advance of research on the occurrence state and content of nitrogen in coal. Coal Goel. Explore. 2016, 44, 9–16.

    33. [33]

      Wang, Y. G.; Wei, X. Y.; Wang, S. K.; Li, Z. K.; Li, P.; Liu, F. J.; Zong, Z. M. Structural evaluation of Xiaolongtan lignite by direct characterization and pyrolytic analysis. Fuel Process. Technol. 2016, 144, 248–254.  doi: 10.1016/j.fuproc.2015.12.034

    34. [34]

      Jiang, Y.; Zong, P. J.; Tian, B.; Xu, F. F.; Tian, Y. Y.; Qiao, Y. Y.; Zhang, J. H. Pyrolysis behaviors and product distribution of Shenmu coal at high heating rate: a study using TG-FTIR and Py-GC/MS. Energ. Convers. Manage. 2019, 179, 72–80.  doi: 10.1016/j.enconman.2018.10.049

    35. [35]

      Yan, L. J.; Bai, Y. H.; Kong, X. J.; Li, F. Effects of alkali and alkaline earth metals on the formation of light aromatic hydrocarbons during coal pyrolysis. J. Anal. Appl. Pyrol. 2016, 122, 169–174.  doi: 10.1016/j.jaap.2016.10.001

    36. [36]

      Kong, J.; Zhao, R.; Bai, Y.; Li, G.; Zhang, C.; Li, F. Study on the formation of phenols during coal flash pyrolysis using pyrolysis-GC/MS. Fuel Process. Technol. 2014, 127, 41–46.  doi: 10.1016/j.fuproc.2014.06.004

    37. [37]

      Lin, H. L; Lian, J.; Liu, Y. P.; Xue, Y.; Yan, S.; Han, S.; Wei, W. Comprehensive study of structure model, pyrolysis and liquefaction behavior of Heidaigou lignite and its liquefied oil. Fuel 2019, 240, 84–91.  doi: 10.1016/j.fuel.2018.11.067

    38. [38]

      Lin, H. L.; Li, K. J.; Zhang, X. W.; Wang, H. X. Structure characterization and model construction of indonesian brown coal. Energ. Fuels 2016, 30, 3809–3814.  doi: 10.1021/acs.energyfuels.5b02696

    39. [39]

      Fu, X. H.; Lu, L.; Ge, Y. Y.; Tian, J. J.; Luo, P. P. China lignite resources and physical features. Coal Sci. Technol. 2012, 40, 104–107.

    40. [40]

      Zhang, S.; Ma, R. J.; Liu, L.; Zhang, H.; Liu, Q. F. Molecular structure characteristics and model construction of anthracite in Jarud. Coal Goel. Explore. 2020, 48, 62–69.

    41. [41]

      Feng, L.; Zhao, G. Y.; Zhao, Y. Y.; Zhao, M. S.; Tang, J. W. Construction of the molecular structure model of the Shengli lignite using TG-GC/MS and FTIR spectrometry data. Fuel 2017, 203, 924–931.

    42. [42]

      Jia, J. B.; Wang, Y.; Li, F. H.; Yi, G. Y.; Zeng, F. G.; Guo, H. Y. IR spectrum simulation of molecular structure model of Shendong coal vitrinite by quantum chemistry method. Spectrosc. Spect. Anal. 2014, 34, 47–51.

  • 加载中
    1. [1]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    2. [2]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    3. [3]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    4. [4]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    5. [5]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    6. [6]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    7. [7]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    8. [8]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    9. [9]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    10. [10]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

    11. [11]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    12. [12]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    13. [13]

      Wei-Yu ZhouZi-Han XiNing-Ning DuLi YeMing-Hao JiangJin-Le HaoBin LinGuo-Dong YaoXiao-Xiao HuangShao-Jiang Song . Rapid discovery of two unprecedented meroterpenoids from Daphne altaica Pall. using molecular networking integrated with MolNetEnhancer and Network Annotation Propagation. Chinese Chemical Letters, 2024, 35(8): 109030-. doi: 10.1016/j.cclet.2023.109030

    14. [14]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    15. [15]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    16. [16]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    17. [17]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    18. [18]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    19. [19]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    20. [20]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

Metrics
  • PDF Downloads(4)
  • Abstract views(425)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return