Citation: Wu-Jiu JIANG, Peng-Hui NI, Fang-Fang MAO, Yu-Xing TAN. Syntheses, Crystal Structures and Property of Pyridine Zinc(Ⅱ) Complexes Based on Halogenated Salicylaldehyde Schiff Base[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220301. doi: 10.14102/j.cnki.0254-5861.2011-3285 shu

Syntheses, Crystal Structures and Property of Pyridine Zinc(Ⅱ) Complexes Based on Halogenated Salicylaldehyde Schiff Base

  • Corresponding author: Yu-Xing TAN, xulichem@ujs.edu.cn
  • Received Date: 11 June 2021
    Accepted Date: 31 August 2021

    Fund Project: the Scientific Research Fund of Hunan Provincial Education Department of China 19C0279

Figures(6)

  • Schiff base pyridine zinc(Ⅱ) complexes 1~4 were synthesized by the reaction of the 2-((2-hydroxybenzylidene)amino)phenol Schiff base with appended donor functionality, zinc acetate, and pyridine. The results of the structural characterization of the complex show that they have the same coordination mode and similar steric structure. Complexes 1 and 3 form a one-dimensional chain structure and two-dimensional grid structure by lots of hydrogen bonds, respectively. Thermogravimetric analysis shows complexes 1~4 can exist stably below 150 ℃. The results of the fluorescence quenching experiments between the complexes and DNA-EB show that the interaction between them is intercalation, and the effect of complex 1 is the most obvious. It is speculated that the steric hindrance of complex 1 is relatively small, and the aromatic ring on the ligand is more likely to inserted into the base pair of DNA.
  • 加载中
    1. [1]

      Stefanidou, M.; Maravelias, C.; Dona, A.; Spiliopoulou, C. Zinc: a multipurpose trace element. Arch. Toxicol. 2006, 80, 1–9.  doi: 10.1007/s00204-005-0009-5

    2. [2]

      Chasapis, C. T.; Loutsidou, A. C.; Spiliopoulou, C. A.; Stefanidou, M. E. Zinc and human health: an update. Arch. Toxicol. 2012, 86, 521–534.  doi: 10.1007/s00204-011-0775-1

    3. [3]

      Han, A. Y.; Su, H.; Xu, G. H.; Khan, M. A.; Li, H. Synthesis, crystal structures, and luminescent properties of Zn(Ⅱ), Cd(Ⅱ), Eu(Ⅲ) complexes and detection of Fe(Ⅲ) ions based on a diacylhydrazone Schiff base. RSC Adv. 2020, 10, 23372–23378.  doi: 10.1039/D0RA03642K

    4. [4]

      Ríos Gómez, M. L.; Lampronti, G. I.; Yang, Y.; Mauro, J. C.; Bennett, T. D. Relating structural disorder and melting in complex mixed ligand zeolitic imidazolate framework glasses. Dalton T. 2020, 49, 850–857.  doi: 10.1039/C9DT03559A

    5. [5]

      Guo, K.; Wang, P.; Tan, W.; Li, Y.; Gao, X.; Wang, Q.; Pu, L. Structure of a dimeric BINOL-imine-Zn(Ⅱ) complex and its role in enantioselective fluorescent recognition. Inorg. Chem. 2020, 59, 17992–17998.  doi: 10.1021/acs.inorgchem.0c02330

    6. [6]

      Jedrzejas, M. J.; Setlow, P. Comparison of the binuclear metalloenzymes diphosphoglycerate-independent phosphoglycerate mutase and alkaline phosphatase: their mechanism of catalysis via a phosphoserine intermediate. Chem. Rev. 2001, 101, 607–618.  doi: 10.1021/cr000253a

    7. [7]

      Lipscomb, W. N.; Sträter, N. Recent advances in zinc enzymology. Chem. Rev. 1996, 96, 2375–2434.  doi: 10.1021/cr950042j

    8. [8]

      Sanatkar, T. H.; Khorshidi, A.; Janczak, J. Dinuclear Zn(Ⅱ) and tetranuclear Co(Ⅱ) complexes of a tetradentate N2O2 Schiff base ligand: synthesis, crystal structure, characterization, DFT studies, cytotoxicity evaluation, and catalytic activity toward benzyl alcohol oxidation. Appl. Organomet. Chem. 2020, 34, e5493.

    9. [9]

      Huang, H. S.; Zhang, T. L.; Zhang, S. T.; Zhang, J. G.; Wu, X. F.; Xu, J. H. Theoretical study of the structure, mechanism of detonation initiation and stability of transition metal carbohydrazide nitrates. Chin. J. Struct. Chem. 2013, 32, 1491-1496.

    10. [10]

      Opalade, A. A.; Karmakar, A.; Rúbio, G. M. D. M.; Pombeiro, A. J. L.; Gerasimchuk, N. Zinc complexes with cyanoxime: structural, spectroscopic, and catalysis studies in the pivaloylcyanoxime–Zn system. Inorg. Chem. 2017, 56, 13962–13974.  doi: 10.1021/acs.inorgchem.7b01891

    11. [11]

      Mohamed, M. F.; Brown, R. S. Cleavage of an RNA model catalyzed by dinuclear Zn(Ⅱ) complexes containing rate-accelerating pendants. Comparison of the catalytic benefits of H-bonding and hydrophobic substituents. J. Org. Chem. 2010, 75, 8471–8477.  doi: 10.1021/jo1017316

    12. [12]

      Pandey, R.; Kumar, A.; Xu, Q.; Pandey, D. S. Zinc(Ⅱ), copper(Ⅱ) and cadmium(Ⅱ) complexes as fluorescent chemosensors for cations. Dalton T. 2020, 49, 542–568.  doi: 10.1039/C9DT03017D

    13. [13]

      Bazany-Rodríguez, I. J.; Salomón-Flores, M. K.; Viviano-Posadas, A. O.; García-Eleno, M. A.; Barroso-Flores, J.; Martínez-Otero, D.; Dorazco-González, A. Chemosensing of neurotransmitters with selectivity and naked eye detection of l-DOPA based on fluorescent Zn(Ⅱ)-terpyridine bearing boronic acid complexes. Dalton T. 2021, 50, 4255–4269.  doi: 10.1039/D0DT04228E

    14. [14]

      Mikata, Y.; Yamashita, A.; Kawamura, A.; Konno, H.; Miyamoto, Y.; Tamotsu, S. Bisquinoline-based fluorescent zinc sensors. Dalton T. 2009, 3800–3806.

    15. [15]

      Majumdar, D.; Das, D.; Sreejith, S. S.; Das, S.; Kumar Biswas, J.; Mondal, M.; Ghosh, D.; Bankura, K.; Mishra, D. Dicyanamide-interlaced assembly of Zn(Ⅱ)-Schiff-base complexes derived from salicylaldimino type compartmental ligands: syntheses, crystal structures, FMO, ESP, TD-DFT, fluorescence lifetime, in vitro antibacterial and anti-biofilm properties. Inorg. Chim. Acta 2019, 489, 244–254.  doi: 10.1016/j.ica.2019.02.022

    16. [16]

      Martínez, V. R.; Aguirre, M. V.; Todaro, J. S.; Ferrer, E. G.; Williams, P. A. M. Candesartan and valsartan Zn(Ⅱ) complexes as inducing agents of reductive stress: mitochondrial dysfunction and apoptosis. New J. Chem. 2021, 45, 939–951.  doi: 10.1039/D0NJ02937H

    17. [17]

      Aleshin, G. Y.; Egorova, B. V.; Priselkova, A. B.; Zamurueva, L. S.; Khabirova, S. Y.; Zubenko, A. D.; Karnoukhova, V. A.; Fedorova, O. A.; Kalmykov, S. N. Zinc and copper complexes with azacrown ethers and their comparative stability in vitro and in vivo. Dalton T. 2020, 49, 6249–6258.  doi: 10.1039/D0DT00645A

    18. [18]

      Sheldrick, G. M. SHELXL-97, A Program for Crystal Structure Refinement. Germany Geöttingen: University of Geöttingen 1997.

    19. [19]

      Wang, M.; Yu, F.; Jiang, W. J.; Tan, Y. X.; Zhang, F. X.; Kuang, D. Z. Syntheses, crystal structures and biological activity of the diorganotin 2-(2-(4-methoxybenzoyl)hydrazono)-3-phenylpropanoic carboxylate complexes. Chin. J. Struct. Chem. 2020, 39, 1965-1972.

    20. [20]

      Zhang, S. Z.; Guo, G.; Ding, W. M.; Li, J.; Wu, Y.; Zhang, H. J.; Guo, J. Q.; Sun, Y. X. Synthesis and spectroscopic properties of two different structural Schiff base Zn(Ⅱ) complexes constructed with/without auxiliary ligands. J. Mol. Struct. 2021, 1230, 129627.  doi: 10.1016/j.molstruc.2020.129627

    21. [21]

      Uddin, M. N.; Ferdous, T.; Islam, Z.; Jahan, M. S.; Quaiyyum, M. A. Development of chemometric model for characterization of non-wood by FT-NIR data. J. Bioresour. Bioprod. 2020, 5, 196–203.  doi: 10.1016/j.jobab.2020.07.005

    22. [22]

      Chen, S.; Jiang, S.; Jiang, H. A review on conversion of crayfish-shell derivatives to functional materials and their environmental applications. J. Bioresour. Bioprod. 2020, 5, 238–247.  doi: 10.1016/j.jobab.2020.10.002

    23. [23]

      Cao, Y.; Wang, X. Z.; Li, Y. J.; Shen, D. H.; Dai, Y. P.; Zhang, S. Z.; Zhang, W. G. Effect of high temperature oil heat treatment on the stsrch content and mold-resistant property of bamboo. J. For. Eng. 2020, 5, 109–115.

    24. [24]

      Chen, Z. J.; Gao, H.; Li, W.; Li, S. J.; Liu, S. X.; Li, J. Research progree of biomass-based optical materials. J. For. Eng. 2020, 5, 1–12.  doi: 10.31186/jenggano.5.1.1-10

    25. [25]

      Pretsch, E.; Bühlmann, P.; Badertscher, M. Structure Determination of Organic Compounds. Fourth ed. Berlin Heidelberg: Springer-Verlag 2009, p69-242.

    26. [26]

      Ashok, B.; Hariram, N.; Siengchin, S.; Rajulu, A. V. Modification of tamarind fruit shell powder with in situ generated copper nanoparticles by single step hydrothermal method. J. Bioresour. Bioprod. 2020, 5, 180–185.  doi: 10.1016/j.jobab.2020.07.003

    27. [27]

      Tan, W.; Hao, X. L.; Wang, Q. W.; Ou, R. X. Mechanical and thermal properties of bamboo plastic composites reinforced by thermotropic liquid crystal copolyesters. J. For. Eng. 2020, 5, 97–103.

    28. [28]

      Zheng, C. X.; Zhu, S.; Lu, Y.; Mei, C. T.; Xu, X. W.; Yue, Y. Y.; Han. J. Q. Synthesis and characterization of cellulose nanofibers/polyacrylic acid-polyacrylamide double network electroconductive hydrogel. J. For. Eng. 2020, 5, 93–100.

    29. [29]

      Zhu, L. T.; Gu, Y. F.; Wu, G. S. Biomass thermal conductivity measurement system design. J. For. Eng. 2020, 5, 97–102.

    30. [30]

      Yan, C.; Zhang, J.; Liang, T.; Li, Q. Diorganotin (Ⅳ) complexes with 4-nitro-N-phthaloyl-glycine: synthesis, characterization, antitumor activity and DNA-binding studies. Biomed. Pharmacother. 2015, 71, 119–127.  doi: 10.1016/j.biopha.2015.02.027

    31. [31]

      Daryanavard, M.; Jannesari, Z.; Javeri, M.; Abyar, F. A new mononuclear zinc(Ⅱ) complex: crystal structure, DNA- and BSA-binding, and molecular modeling; in vitro cytotoxicity of the Zn(Ⅱ) complex and its nanocomplex. Spectrochim. Acta A 2020, 233, 118175.  doi: 10.1016/j.saa.2020.118175

    32. [32]

      Mondal, A. S.; Jana, M. S.; Manna, C. K.; Naskar, R.; Mondal, T. K. Synthesis of a zinc(Ⅱ) complex with hexadentate N4S2 donor thioether ligand: X-ray structure, DNA binding study and DFT computation. J. Mol. Struct. 2018, 1164, 94–99.  doi: 10.1016/j.molstruc.2018.03.038

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    3. [3]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    4. [4]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    5. [5]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    6. [6]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    7. [7]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    8. [8]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    9. [9]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    10. [10]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    11. [11]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    12. [12]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    13. [13]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    14. [14]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    15. [15]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    16. [16]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    19. [19]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    20. [20]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

Metrics
  • PDF Downloads(6)
  • Abstract views(623)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return