Citation: Tian-Ming WANG, Yan-Xin CHEN, Mei-Hong TONG, Shi-Wei LIN, Jing-Wen ZHOU, Xia JIANG, Can-Zhong LU. Self-organized TiO2 Nanotube Arrays with Controllable Geometric Parameters for Highly Efficient PEC Water Splitting[J]. Chinese Journal of Structural Chemistry, ;2022, 41(2): 220215. doi: 10.14102/j.cnki.0254-5861.2011-3280 shu

Self-organized TiO2 Nanotube Arrays with Controllable Geometric Parameters for Highly Efficient PEC Water Splitting

  • Corresponding author: Yan-Xin CHEN, yanxinchen@fjirsm.ac.cn Can-Zhong LU, czlu@fjirsm.ac.cn
  • Received Date: 7 June 2021
    Accepted Date: 26 October 2021

    Fund Project: the National Natural Science Foundation of China 21805280Youth Innovation Foundation of Xiamen City 3502Z20206085Opening Project of PCOSS, Xiamen University 201907the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000the Key Program of Frontier Science, CAS QYZDJ-SSW-SLH033the Xiamen Science and Technology Program Project 3502Z20203085the grant from FJIRSM CXZX-2017-T04

Figures(7)

  • In this report, a series of self-organized TiO2 nanotube arrays were prepared by anodization of titanium foil in mixed electrolytes composed of water, ethylene glycol, and NH4F. Their photoelectrochemical (PEC) performance as a photoanode was characterized by the PEC water-splitting hydrogen (H2) generation reaction. The internal relationship between the TiO2 nanotube arrays (TNTAs) morphology and their PEC performance was thoroughly investigated. Our results show that when the etching time is 10 hours, the length of the as-prepared TNTAs is about 20.78 μm and the measured photocurrent density is around 1.25 mA·cm-2 with applied bias voltage 0.6 V (vs. Ag/AgCl) under simulated sunlight irradiation, which is 976 times higher than that of the TiO2 substrate without nanotubes architecture (0.00128 mA⋅cm-2). More interestingly, the results of the IPCE measurement show that the band-gap of the as-prepared TNTAs is reduced from 3.20 to 2.83 eV. The corresponding optical response limit is also extended from 400 nm to TiO2 nanotube arrays is 510 nm, which indicates that the increasement of the TNTAs PEC performance benefits from the great improvement of its utilization of both the UV and visible light irradiation.
  • 加载中
    1. [1]

      Linsebigler, A. L.; Lu, G.; Yates, J. T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735-738.  doi: 10.1021/cr00035a013

    2. [2]

      Adachi, M.; Murata, Y.; Harada, M.; Yoshikawa, S. Formation of titania nanotubes with high photo-catalytic activity. Chem. Lett. 2000, 29, 942-943.  doi: 10.1246/cl.2000.942

    3. [3]

      Long, D.; Liu, J.; Bai, L.; Yan, L.; Liu, H.; Feng, Z.; Zheng, L.; Chen, X.; Li, S.; Lu, M. Continuously selective photocatalytic CO2 fixation via controllable S/Se ratio in a TiO2-MoSxSey dual-excitation hetero structured nanotree. ACS. Photonics 2020, 7, 3394-3400.  doi: 10.1021/acsphotonics.0c01197

    4. [4]

      Chu, S. Z.; Inoue, S.; Wada, K.; Lim, D.; Haneda, H.; Awatsu, S. Highly porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and sol-gel process. J. Phys. Chem. B 2003, 107, 6586-6589.  doi: 10.1021/jp0349684

    5. [5]

      Varghese, O. K.; Gong, D.; Paulose, M.; Ong. K. G.; Dickey, E. C. Grimes, C. A. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 2003, 15, 624-627.  doi: 10.1002/adma.200304586

    6. [6]

      Mor, G. K.; Carvalho, M. A.; Varghese, O. K.; Pishko, M. V.; Grimes, C. A. A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 2004, 19, 628-634.  doi: 10.1557/jmr.2004.19.2.628

    7. [7]

      Varghese, O. K.; Mor, G. K.; Grimes, C. A.; Paulose, M.; Mukherjee, N. A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J. Nanosci. Nanotechnol. 2004, 4, 733-737.  doi: 10.1166/jnn.2004.092

    8. [8]

      Paulose, M.; Shankar, K.; Varghese, O. K.; Mor, G. K.; Hardin, B.; Grimes, C. A. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnology 2006, 17, 1446-1448.  doi: 10.1088/0957-4484/17/5/046

    9. [9]

      Mor, G. K.; Shankar, K.; Varghese, O. K.; Grimes, C. A. Photoelectrochemical properties of titania nanotubes. J. Mater. Res. 2004, 19, 2989-2996.  doi: 10.1557/JMR.2004.0370

    10. [10]

      Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 2005, 5, 191-195.  doi: 10.1021/nl048301k

    11. [11]

      Varghese, O. K.; Paulose. M.; Shankar, K.; Mor, G. K.; Grimes, C. A. Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J. Nanosci. Nanotechnol. 2005, 5, 1158-1165.  doi: 10.1166/jnn.2005.195

    12. [12]

      Uchida, S.; Chiba, R.; Tomiha, M.; Masaki, N.; Shirai, M. Application of titania nanotubes to a dye-sensitized solar cell. Electrochemistry 2002, 70, 418-420.  doi: 10.5796/electrochemistry.70.418

    13. [13]

      Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 2006, 6, 215-218.  doi: 10.1021/nl052099j

    14. [14]

      Paulose, M.; Shankar, K.; Varghese, O. K.; Mor, G. K.; Hardin, B.; Grimes, C. A. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnology 2006, 17, 1446-1448.  doi: 10.1088/0957-4484/17/5/046

    15. [15]

      Hoyer, P. Formation of a titanium dioxide nanotube array. Langmuir 1996, 12, 1411-1413.  doi: 10.1021/la9507803

    16. [16]

      Lakshmi, B. B.; Dorhout, P. K.; Martin, C. R. Sol-gel template synthesis of semiconductor nanostructures. Chem. Mater. 1997, 9, 857-862.  doi: 10.1021/cm9605577

    17. [17]

      Imai, H.; Takei, Y.; Shimizu, K.; Matsuda, M.; Hirashima, H. Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J. Mater. Chem. 1999, 9, 2971-2972.  doi: 10.1039/a906005g

    18. [18]

      Michailowski, A.; AlMawlwai, D.; Cheng, G.; Moskovits, M. Highly regular anatase nanotuble arrays fabricated in porous anodic templates. Chem. Phys. Lett. 2001, 349, 1-5.  doi: 10.1016/S0009-2614(01)01159-9

    19. [19]

      Jung, J. H.; Kobayashi, H.; Van Bommel, K. J. C.; Shinkai, S.; Shimizu, T. Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chem. Mater. 2002, 14, 1445-1447.  doi: 10.1021/cm011625e

    20. [20]

      Kobayashi, S.; Hamasaki, N.; Suzuki, M.; Kimura, M.; Shirai, H.; Hanabusa, K. Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents. J. Am. Chem. Soc. 2002, 124, 6550-6551.  doi: 10.1021/ja0260622

    21. [21]

      Tian, Z. R.; Voigt, J. A.; Liu, J.; Mckenzie, B.; Mcdermott, M. J. Biomimetic arrays of oriented helical ZnO nanorods and columns. J. Am. Chem. Soc. 2003, 124, 12954-12955.

    22. [22]

      Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Formation of titanium oxide nanotube. Langmuir 1998, 14, 3160-3163.  doi: 10.1021/la9713816

    23. [23]

      Chen, Q.; Zhou, W.; Du, G. H.; Peng, L. M. Trititanate nanotubes made via a single alkali treatment. Adv. Mater. 2002, 14, 1208-1211.  doi: 10.1002/1521-4095(20020903)14:17<1208::AID-ADMA1208>3.0.CO;2-0

    24. [24]

      Yao. B. D.; Chan. Y. F.; Zhang. X. Y.; Zhang, W. F.; Yang, Z. Y.; Wang, N. Formation mechanism of TiO2 nanotubes. Appl. Phys. Lett. 2003, 82, 281-283.  doi: 10.1063/1.1537518

    25. [25]

      Dickey, E. C.; Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W.; Singh, R. S.; Chen, Z. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 2001, 16, 3331-3334.  doi: 10.1557/JMR.2001.0457

    26. [26]

      Mor, G. K.; Varghese, O. K.; Paulose, M.; Mukherjee. N.; Grimes, C. A. Fabrication of tapered, conical-shaped titania nanotubes. J. Mater. Res. 2003, 18, 2588-2593.  doi: 10.1557/JMR.2003.0362

    27. [27]

      Cai, Q.; Paulose, M.; Varghese, O. K.; Grimes. C. A. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 2005, 20, 230-236.  doi: 10.1557/JMR.2005.0020

    28. [28]

      Ruan, C.; Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J. Phys. Chem. B 2005, 109, 15754-15759.  doi: 10.1021/jp052736u

    29. [29]

      Macák, J. M.; Tsuchiya, H.; Schmuki, P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed. 2005, 44, 2100-2102.  doi: 10.1002/anie.200462459

    30. [30]

      Macák, J. M.; Tsuchiya, H.; Taveira, L.; Aldabergerova, S. Schmuki, P. Smooth anodic TiO2 nanotubes. Angew. Chem. Int. Ed. 2005, 44, 7463-7465.  doi: 10.1002/anie.200502781

    31. [31]

      Quan, X.; Yang, S.; Ruan, X.; Zhao, H. Preparation of titania nanotubes and their environmental applications as electrode. Environ. Sci. Technol. 2005, 39, 3770-3775.  doi: 10.1021/es048684o

    32. [32]

      Varghese, O. K.; Mor, G. K.; Grimes, C. A.; Paulose. M.; Mukherjeeb, N. A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J. Nanosci. Nanotechnol. 2004, 4, 733-737.  doi: 10.1166/jnn.2004.092

    33. [33]

      Paulose, M.; Shankar. K.; Varghese. O. K.; Mor, G. K.; Hardin, B.; Grimes, C. A. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnology 2006, 17, 1446-1448.  doi: 10.1088/0957-4484/17/5/046

    34. [34]

      Mor, G. K.; Shankar, K.; Varghese, O. K.; Grimes, C. A. Photoelectrochemical properties of titania nanotubes. J. Mater. Res. 2004, 19, 2989-2996.  doi: 10.1557/JMR.2004.0370

    35. [35]

      Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 2005, 5, 191-195.  doi: 10.1021/nl048301k

    36. [36]

      Varghese, O. K.; Paulose, M.; Shankar, K.; Mor, G. K.; Grimes, C. A. Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J. Nanosci. Nanotechnol. 2005, 5, 1158-1165.  doi: 10.1166/jnn.2005.195

    37. [37]

      Mor. G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 2006, 6, 215-218.  doi: 10.1021/nl052099j

    38. [38]

      Chen, Y. X.; Jacob, T. Function calculation: a simple way to predict the geometry parameters of self-organized titania nanotube arrays. ChemElectroChem 2017, 4, 476-480.  doi: 10.1002/celc.201600860

    39. [39]

      Chen, Z.; Dinh, H. N.; Miller, E. Photoelectrochemical Water Splitting. Gaussian, Inc., Springer. Cham. Switzerland 2013, 87-97.

    40. [40]

      Wang, Y.; Chen, Y. X.; Barakat, T.; Wang, T. M.; Krief, A.; Zeng, Y. J.; Laboureur, M.; Fusaro, L.; Liao, H. G.; Su, B. L. Synergistic effects of carbon doping and coating of TiO2 with exceptional photocurrent enhancement for high performance H2 production from water splitting. J. Energy Chem. 2021, 56, 141-151.  doi: 10.1016/j.jechem.2020.08.002

    41. [41]

      Hankin, A.; Alexander, J. C.; Kelsall, G. H. Constraints to the flat band potential of hematite photo-electrodes. Phys. Chem. Chem. Phys. 2014, 16, 16176-16186.  doi: 10.1039/C4CP00096J

    42. [42]

      Huang, S.; Luo, W.; Zou, Z. Band positions and photoelectrochemical properties of Cu2ZnSnS4 thin films by the ultrasonic spray pyrolysis method. J. Phys. D 2013, 46, 235108-6.  doi: 10.1088/0022-3727/46/23/235108

  • 加载中
    1. [1]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    2. [2]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    3. [3]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    4. [4]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    5. [5]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    6. [6]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    7. [7]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    8. [8]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    9. [9]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    10. [10]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    11. [11]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    12. [12]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    13. [13]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    14. [14]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    15. [15]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    16. [16]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    17. [17]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    18. [18]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    19. [19]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    20. [20]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

Metrics
  • PDF Downloads(3)
  • Abstract views(289)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return