Self-organized TiO2 Nanotube Arrays with Controllable Geometric Parameters for Highly Efficient PEC Water Splitting
- Corresponding author: Yan-Xin CHEN, yanxinchen@fjirsm.ac.cn Can-Zhong LU, czlu@fjirsm.ac.cn
Citation:
Tian-Ming WANG, Yan-Xin CHEN, Mei-Hong TONG, Shi-Wei LIN, Jing-Wen ZHOU, Xia JIANG, Can-Zhong LU. Self-organized TiO2 Nanotube Arrays with Controllable Geometric Parameters for Highly Efficient PEC Water Splitting[J]. Chinese Journal of Structural Chemistry,
;2022, 41(2): 220215.
doi:
10.14102/j.cnki.0254-5861.2011-3280
Linsebigler, A. L.; Lu, G.; Yates, J. T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735-738.
doi: 10.1021/cr00035a013
Adachi, M.; Murata, Y.; Harada, M.; Yoshikawa, S. Formation of titania nanotubes with high photo-catalytic activity. Chem. Lett. 2000, 29, 942-943.
doi: 10.1246/cl.2000.942
Long, D.; Liu, J.; Bai, L.; Yan, L.; Liu, H.; Feng, Z.; Zheng, L.; Chen, X.; Li, S.; Lu, M. Continuously selective photocatalytic CO2 fixation via controllable S/Se ratio in a TiO2-MoSxSey dual-excitation hetero structured nanotree. ACS. Photonics 2020, 7, 3394-3400.
doi: 10.1021/acsphotonics.0c01197
Chu, S. Z.; Inoue, S.; Wada, K.; Lim, D.; Haneda, H.; Awatsu, S. Highly porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and sol-gel process. J. Phys. Chem. B 2003, 107, 6586-6589.
doi: 10.1021/jp0349684
Varghese, O. K.; Gong, D.; Paulose, M.; Ong. K. G.; Dickey, E. C. Grimes, C. A. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 2003, 15, 624-627.
doi: 10.1002/adma.200304586
Mor, G. K.; Carvalho, M. A.; Varghese, O. K.; Pishko, M. V.; Grimes, C. A. A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 2004, 19, 628-634.
doi: 10.1557/jmr.2004.19.2.628
Varghese, O. K.; Mor, G. K.; Grimes, C. A.; Paulose, M.; Mukherjee, N. A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J. Nanosci. Nanotechnol. 2004, 4, 733-737.
doi: 10.1166/jnn.2004.092
Paulose, M.; Shankar, K.; Varghese, O. K.; Mor, G. K.; Hardin, B.; Grimes, C. A. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnology 2006, 17, 1446-1448.
doi: 10.1088/0957-4484/17/5/046
Mor, G. K.; Shankar, K.; Varghese, O. K.; Grimes, C. A. Photoelectrochemical properties of titania nanotubes. J. Mater. Res. 2004, 19, 2989-2996.
doi: 10.1557/JMR.2004.0370
Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 2005, 5, 191-195.
doi: 10.1021/nl048301k
Varghese, O. K.; Paulose. M.; Shankar, K.; Mor, G. K.; Grimes, C. A. Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J. Nanosci. Nanotechnol. 2005, 5, 1158-1165.
doi: 10.1166/jnn.2005.195
Uchida, S.; Chiba, R.; Tomiha, M.; Masaki, N.; Shirai, M. Application of titania nanotubes to a dye-sensitized solar cell. Electrochemistry 2002, 70, 418-420.
doi: 10.5796/electrochemistry.70.418
Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 2006, 6, 215-218.
doi: 10.1021/nl052099j
Paulose, M.; Shankar, K.; Varghese, O. K.; Mor, G. K.; Hardin, B.; Grimes, C. A. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnology 2006, 17, 1446-1448.
doi: 10.1088/0957-4484/17/5/046
Hoyer, P. Formation of a titanium dioxide nanotube array. Langmuir 1996, 12, 1411-1413.
doi: 10.1021/la9507803
Lakshmi, B. B.; Dorhout, P. K.; Martin, C. R. Sol-gel template synthesis of semiconductor nanostructures. Chem. Mater. 1997, 9, 857-862.
doi: 10.1021/cm9605577
Imai, H.; Takei, Y.; Shimizu, K.; Matsuda, M.; Hirashima, H. Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J. Mater. Chem. 1999, 9, 2971-2972.
doi: 10.1039/a906005g
Michailowski, A.; AlMawlwai, D.; Cheng, G.; Moskovits, M. Highly regular anatase nanotuble arrays fabricated in porous anodic templates. Chem. Phys. Lett. 2001, 349, 1-5.
doi: 10.1016/S0009-2614(01)01159-9
Jung, J. H.; Kobayashi, H.; Van Bommel, K. J. C.; Shinkai, S.; Shimizu, T. Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chem. Mater. 2002, 14, 1445-1447.
doi: 10.1021/cm011625e
Kobayashi, S.; Hamasaki, N.; Suzuki, M.; Kimura, M.; Shirai, H.; Hanabusa, K. Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents. J. Am. Chem. Soc. 2002, 124, 6550-6551.
doi: 10.1021/ja0260622
Tian, Z. R.; Voigt, J. A.; Liu, J.; Mckenzie, B.; Mcdermott, M. J. Biomimetic arrays of oriented helical ZnO nanorods and columns. J. Am. Chem. Soc. 2003, 124, 12954-12955.
Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Formation of titanium oxide nanotube. Langmuir 1998, 14, 3160-3163.
doi: 10.1021/la9713816
Chen, Q.; Zhou, W.; Du, G. H.; Peng, L. M. Trititanate nanotubes made via a single alkali treatment. Adv. Mater. 2002, 14, 1208-1211.
doi: 10.1002/1521-4095(20020903)14:17<1208::AID-ADMA1208>3.0.CO;2-0
Yao. B. D.; Chan. Y. F.; Zhang. X. Y.; Zhang, W. F.; Yang, Z. Y.; Wang, N. Formation mechanism of TiO2 nanotubes. Appl. Phys. Lett. 2003, 82, 281-283.
doi: 10.1063/1.1537518
Dickey, E. C.; Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W.; Singh, R. S.; Chen, Z. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 2001, 16, 3331-3334.
doi: 10.1557/JMR.2001.0457
Mor, G. K.; Varghese, O. K.; Paulose, M.; Mukherjee. N.; Grimes, C. A. Fabrication of tapered, conical-shaped titania nanotubes. J. Mater. Res. 2003, 18, 2588-2593.
doi: 10.1557/JMR.2003.0362
Cai, Q.; Paulose, M.; Varghese, O. K.; Grimes. C. A. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 2005, 20, 230-236.
doi: 10.1557/JMR.2005.0020
Ruan, C.; Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J. Phys. Chem. B 2005, 109, 15754-15759.
doi: 10.1021/jp052736u
Macák, J. M.; Tsuchiya, H.; Schmuki, P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed. 2005, 44, 2100-2102.
doi: 10.1002/anie.200462459
Macák, J. M.; Tsuchiya, H.; Taveira, L.; Aldabergerova, S. Schmuki, P. Smooth anodic TiO2 nanotubes. Angew. Chem. Int. Ed. 2005, 44, 7463-7465.
doi: 10.1002/anie.200502781
Quan, X.; Yang, S.; Ruan, X.; Zhao, H. Preparation of titania nanotubes and their environmental applications as electrode. Environ. Sci. Technol. 2005, 39, 3770-3775.
doi: 10.1021/es048684o
Varghese, O. K.; Mor, G. K.; Grimes, C. A.; Paulose. M.; Mukherjeeb, N. A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J. Nanosci. Nanotechnol. 2004, 4, 733-737.
doi: 10.1166/jnn.2004.092
Paulose, M.; Shankar. K.; Varghese. O. K.; Mor, G. K.; Hardin, B.; Grimes, C. A. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnology 2006, 17, 1446-1448.
doi: 10.1088/0957-4484/17/5/046
Mor, G. K.; Shankar, K.; Varghese, O. K.; Grimes, C. A. Photoelectrochemical properties of titania nanotubes. J. Mater. Res. 2004, 19, 2989-2996.
doi: 10.1557/JMR.2004.0370
Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 2005, 5, 191-195.
doi: 10.1021/nl048301k
Varghese, O. K.; Paulose, M.; Shankar, K.; Mor, G. K.; Grimes, C. A. Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J. Nanosci. Nanotechnol. 2005, 5, 1158-1165.
doi: 10.1166/jnn.2005.195
Mor. G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 2006, 6, 215-218.
doi: 10.1021/nl052099j
Chen, Y. X.; Jacob, T. Function calculation: a simple way to predict the geometry parameters of self-organized titania nanotube arrays. ChemElectroChem 2017, 4, 476-480.
doi: 10.1002/celc.201600860
Chen, Z.; Dinh, H. N.; Miller, E. Photoelectrochemical Water Splitting. Gaussian, Inc., Springer. Cham. Switzerland 2013, 87-97.
Wang, Y.; Chen, Y. X.; Barakat, T.; Wang, T. M.; Krief, A.; Zeng, Y. J.; Laboureur, M.; Fusaro, L.; Liao, H. G.; Su, B. L. Synergistic effects of carbon doping and coating of TiO2 with exceptional photocurrent enhancement for high performance H2 production from water splitting. J. Energy Chem. 2021, 56, 141-151.
doi: 10.1016/j.jechem.2020.08.002
Hankin, A.; Alexander, J. C.; Kelsall, G. H. Constraints to the flat band potential of hematite photo-electrodes. Phys. Chem. Chem. Phys. 2014, 16, 16176-16186.
doi: 10.1039/C4CP00096J
Huang, S.; Luo, W.; Zou, Z. Band positions and photoelectrochemical properties of Cu2ZnSnS4 thin films by the ultrasonic spray pyrolysis method. J. Phys. D 2013, 46, 235108-6.
doi: 10.1088/0022-3727/46/23/235108
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015