Antibiotic Silver Particles Coated Graphene Oxide/polyurethane Nanocomposites Foams and Its Mechanical Properties
- Corresponding author: Zi-Xiang WENG, wzx@fjirsm.ac.cn Li-Xin WU, lxwu@fjirsm.ac.cn
Citation: Zhi YANG, Kun-Rong LI, Yuan-Ye ZHANG, Jia-Le HU, Tian-Yuan LI, Zi-Xiang WENG, Li-Xin WU. Antibiotic Silver Particles Coated Graphene Oxide/polyurethane Nanocomposites Foams and Its Mechanical Properties[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220312. doi: 10.14102/j.cnki.0254-5861.2011-3273
Zhu, Y. F.; Xiong, J. P.; Tang, Y. M.; Zuo, Y. EIS study on failure process of two polyurethane composite coatings. Prog. Org. Coat. 2010, 69, 7–11.
doi: 10.1016/j.porgcoat.2010.04.017
Maminski, M. L.; Wieclaw-Midor, A. M.; Parzuchowski, P. G. The effect of silica-filler on polyurethane adhesives based on renewable resource for wood bonding. Polymers 2020, 12, 2177–13.
doi: 10.3390/polym12102177
Feng, C. F.; Yi, Z. F.; Jin, X.; Seraji, S. M.; Dong, Y. J.; Kong, L. X.; Salim, N. Solvent crystallization-induced porous polyurethane/graphene composite foams for pressure sensing. Compos. Pt. B-Eng. 2020, 194, 108065–10.
doi: 10.1016/j.compositesb.2020.108065
Yao, Y. Y.; Jin, S. H.; Ma, X. L.; Yu, R.; Zou, H. M.; Wang, H. J.; Lv, X. J.; Shu, Q. H. Graphene-containing flexible polyurethane porous composites with improved electromagnetic shielding and flame retardancy. Compos. Sci. Technol. 2020, 200, 108457–10.
doi: 10.1016/j.compscitech.2020.108457
Furtwengler, P.; Averous, L. Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polym. Chem. 2018, 9, 4258–4287.
doi: 10.1039/C8PY00827B
Davis, R. L.; Nalepa, C. J. Studies of alkylthio-substituted aromatic diamines as curatives for polyurethane cast elastomers. J. Polym. Sci. Pol. Chem. 1990, 28, 3701–3724.
doi: 10.1002/pola.1990.080281315
Atiqah, A.; Mastura, M. T.; Ali, B. A.; Jawaid, M.; Sapuan, S. M. A review on polyurethane and its polymer composites. Curr. Org. Synth. 2017, 14, 233–248.
doi: 10.2174/1570179413666160831124749
Wang, L.; Hong, Y.; Li, J. X. Durability of running shoes with ethylene vinyl acetate or polyurethane midsoles. J. Sports Sci. 2012, 30, 1787–1792.
doi: 10.1080/02640414.2012.723819
Gheydari, M.; Dorraji, M. S. S.; Fazli, M.; Rasoulifard, M. H.; Almaie, S.; Daneshvar, H.; Ashjari, H. R. Preparation of open-cell polyurethane nanocomposite foam with Ag3PO4 and GO: antibacterial and adsorption characteristics. J. Polym. Res. 2021, 28, 02432–12.
Sportelli, M. C.; Picca, R. A.; Ronco, R.; Bonerba, E.; Tantillo, G.; Pollini, M.; Sannino, A.; Valentini, A.; Cataldi, T. R. I.; Cioffi, N. Investigation of industrial polyurethane foams modified with antimicrobial copper nanoparticles. Materials 2016, 9, 9070544–13.
Hong, C. H.; Kim, H. S.; Park, H. H.; Kim, Y. H.; Kim, S. B.; Hwang, T. W. Development of antimicrobial polyurethane foam for automotive seat modified by Urushiol. Polym. -Korea 2006, 30, 402–406.
Udabe, E.; Isik, M.; Sardon, H.; Irusta, L.; Salsamendi, M.; Sun, Z.; Zheng, Z. Q.; Yan, F.; Mecerreyes, D. Antimicrobial polyurethane foams having cationic ammonium groups. J. Appl. Polym. Sci. 2017, 134, 45473–7.
doi: 10.1002/app.45473
Chernousova, S.; Epple, M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 2013, 52, 1636–1653.
doi: 10.1002/anie.201205923
Madkour, T. M.; Abdelazeem, E. A.; Tayel, A.; Mustafa, G.; Siam, R. In situ polymerization of polyurethane-silver nanocomposite foams with intact thermal stability, improved mechanical performance, and induced antimicrobial properties. J. Appl. Polym. Sci. 2016, 43125–133.
Kvitek, L.; Panacek, A.; Prucek, R.; Soukupova, J.; Vanickova, M.; Kolar, M.; Zboril, R. Antibacterial activity and toxicity of silver – nanosilver versus ionic silver. J. Phys. Conf. Ser. 2011, 304, 012029–9.
doi: 10.1088/1742-6596/304/1/012029
Vinay, V. C.; Varma, D. S. M.; Chandan, M. R.; Sivabalan, P.; Jaiswal, A. K.; Swetha, S.; Kaczmarek, B.; Sionkowska, A. Study of silver nanoparticle-loaded auxetic polyurethane foams for medical cushioning applications. Polym. Bull. 2021, 78, 03705–18.
doi: 10.1007/s00289-020-03289-y
Zhao, B.; Qian, Y.; Qian, X.; Fan, J.; Feng, Y. Fabrication and characterization of waterborne polyurethane/silver nanocomposite foams. Polym. Compos. 2019, 40, 1492–1498.
doi: 10.1002/pc.24888
Wattanodorn, Y.; Jenkan, R.; Atorngitjawat, P.; Wirasate, S. Antibacterial anionic waterborne polyurethanes/Ag nanocomposites with enhanced mechanical properties. Polym. Test. 2014, 40, 163–169.
doi: 10.1016/j.polymertesting.2014.09.004
Njuguna, J.; Pielichowski, K. Polymer nanocomposites for aerospace applications: fabrication. Adv. Eng. Mater. 2004, 6, 193–203.
doi: 10.1002/adem.200305111
Maiti, D.; Tong, X. M.; Mou, X. Z.; Yang, K. Carbon-based nanomaterials for biomedical applications: a recent study. Front. Pharmacol. 2019, 9, 01401–16.
doi: 10.3389/fphar.2018.01401
Ravishankar, B.; Nayak, S. K.; Kader, M. A. Hybrid composites for automotive applications - a review. J. Reinf. Plast. Compos. 2019, 38, 835–845.
doi: 10.1177/0731684419849708
Kamran, U.; Heo, Y. J.; Lee, J. W.; Park, S. J. Functionalized carbon materials for electronic devices: a review. Micromachines 2019, 10, 10040234–25.
Le, B.; Khaliq, J.; Huo, D. H.; Teng, X. Y.; Shyha, I. A review on nanocomposites. Part 1: mechanical properties. J. Manuf. Sci. Eng. -Trans. ASME 2020, 142, 100801–23.
doi: 10.1115/1.4047047
Papageorgiou, D. G.; Li, Z. L.; Liu, M. F.; Kinloch, I. A.; Young, R. J. Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale 2020, 12, 2228–2267.
doi: 10.1039/C9NR06952F
Ke, K.; Yue, L.; Shao, H. Q.; Yang, M. B.; Yang, W.; Manas-Zloczower, I. Boosting electrical and piezoresistive properties of polymer nanocomposites via hybrid carbon fillers: a review. Carbon 2021, 173, 1020–1040.
doi: 10.1016/j.carbon.2020.11.070
Wang, R.; Zhuo, D.; Weng, Z.; Wu, L.; Cheng, X.; Zhou, Y.; Wang, J.; Xuan, B. A novel nanosilica/graphene oxide hybrid and its flame retarding epoxy resin with simultaneously improved mechanical, thermal conductivity, and dielectric properties. J. Mater. Chem. A 2015, 3, 9826–9836.
doi: 10.1039/C5TA00722D
Dai, X. Y.; Du, Y. Z.; Yang, J. Y.; Wang, D.; Gu, J. W.; Li, Y. F.; Wang, S.; Xu, B. B.; Kong, J. Recoverable and self-healing electromagnetic wave absorbing nanocomposites. Compos. Sci. Technol. 2019, 174, 27–32.
doi: 10.1016/j.compscitech.2019.02.018
Liu, S.; Qin, S. H.; Jiang, Y.; Song, P. A.; Wang, H. Lightweight high-performance carbon-polymer nanocomposites for electromagnetic interference shielding. Compos. Pt. A-Appl. Sci. Manuf. 2021, 145, 106376–30.
doi: 10.1016/j.compositesa.2021.106376
Sun, X.; Huang, C.; Wang, L.; Liang, L.; Cheng, Y.; Fei, W.; Li, Y. Recent progress in graphene/polymer nanocomposites. Adv. Mater. 2021, 33, 2001105–28.
doi: 10.1002/adma.202001105
Rahmani, Z.; Samadi, M. T.; Kazemi, A.; Rashidi, A. M.; Rahmani, A. R. Nanoporous graphene and graphene oxide-coated polyurethane sponge as a highly efficient, superhydrophobic, and reusable oil spill absorbent. J. Environ. Chem. Eng. 2017, 5, 5025–5032.
doi: 10.1016/j.jece.2017.09.028
Zhang, X. T.; Liu, D. Y.; Ma, Y. L.; Nie, J.; Sui, G. X. Super-hydrophobic graphene coated polyurethane (GN@PU) sponge with great oil-water separation performance. Appl. Surf. Sci. 2017, 422, 116–124.
doi: 10.1016/j.apsusc.2017.06.009
Baek, S. H.; Kim, J. H. Polyurethane composite foams including silicone-acrylic particles for enhanced sound absorption via increased damping and frictions of sound waves. Compos. Sci. Technol. 2020, 198, 108325–7.
doi: 10.1016/j.compscitech.2020.108325
Tang, Y. M.; Guo, Q. Q.; Chen, Z. M.; Zhang, X. X.; Lu, C. H. In-situ reduction of graphene oxide-wrapped porous polyurethane scaffolds: synergistic enhancement of mechanical properties and piezoresistivity. Compos. Pt. A-Appl. Sci. Manuf. 2019, 116, 106–113.
doi: 10.1016/j.compositesa.2018.10.025
Shao, W.; Liu, X. F.; Min, H. H.; Dong, G. H.; Feng, Q. Y.; Zuo, S. L. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl. Mater. Interfaces 2015, 7, 6966–6973.
doi: 10.1021/acsami.5b00937
Shuai, C. J.; Guo, W.; Wu, P.; Yang, W. J.; Hu, S.; Xia, Y.; Feng, P. A graphene oxide-Ag co-dispersing nanosystem: dual synergistic effects on antibacterial activities and mechanical properties of polymer scaffolds. Chem. Eng. J. 2018, 347, 322–333.
doi: 10.1016/j.cej.2018.04.092
Bao, Q.; Zhang, D.; Qi, P. Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J. Colloid Interface Sci. 2011, 360, 463–470.
doi: 10.1016/j.jcis.2011.05.009
Jeronsia, J. E.; Ragu, R.; Sowmya, R.; Mary, A. J.; Das, S. J. Comparative investigation on camellia sinensis mediated green synthesis of Ag and Ag/GO nanocomposites for its anticancer and antibacterial efficacy. Surf. Interfaces 2020, 21, 100787–10.
doi: 10.1016/j.surfin.2020.100787
Chen, Y. N.; Hsueh, Y. H.; Hsieh, C. T.; Tzou, D. Y.; Chang, P. L. Antiviral activity of graphene-silver nanocomposites against non-enveloped and enveloped viruses. Int. J. Environ. Res. Public. Health 2016, 13, 040430–12.
Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.
doi: 10.1021/nn1006368
Yoo, M. J.; Park, H. B. Effect of hydrogen peroxide on properties of graphene oxide in Hummers method. Carbon 2019, 141, 515–522.
doi: 10.1016/j.carbon.2018.10.009
Dong, L.; Yang, J.; Chhowalla, M.; Loh, K. P. Synthesis and reduction of large sized graphene oxide sheets. Chem. Soc. Rev. 2017, 46, 7306–7316.
doi: 10.1039/C7CS00485K
Kalishwaralal, K.; Deepak, V.; Pandian, S. R. K.; Gurunathan, S. Biological synthesis of gold nanocubes from Bacillus licheniformis. Bioresour. Technol. 2009, 100 21, 5356–5358.
Agata, Y.; Iwao, Y.; Miyagishima, A.; Itai, S. Novel mathematical model for predicting the dissolution profile of spherical particles under non-sink conditions. Chem. Pharm. Bull. 2010, 58, 511–515.
doi: 10.1248/cpb.58.511
Lobos, J.; Velankar, S. How much do nanoparticle fillers improve the modulus and strength of polymer foams? J. Cell. Plast. 2016, 52, 57–88.
doi: 10.1177/0021955X14546015
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
Rui Liu , Jinbo Pang , Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Qiang Cao , Xue-Feng Cheng , Jia Wang , Chang Zhou , Liu-Jun Yang , Guan Wang , Dong-Yun Chen , Jing-Hui He , Jian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
Jieqiong Qin , Zhi Yang , Jiaxin Ma , Liangzhu Zhang , Feifei Xing , Hongtao Zhang , Shuxia Tian , Shuanghao Zheng , Zhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
Tao Long , Peng Chen , Bin Feng , Caili Yang , Kairong Wang , Yulei Wang , Can Chen , Yaping Wang , Ruotong Li , Meng Wu , Minhuan Lan , Wei Kong Pang , Jian-Fang Wu , Yuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267