Citation: Le FU, Li-Nan ZHAO, Hong-Mei GUO, Na YU, Wen-Xuan QUAN, Yi CHEN, Mao SHU, Rui WANG, Zhi-Hua LIN. Discovery of 4-Thiazol-N-(pyridin-2-yl)pyrimidin-2-amine as Novel Cyclin-dependent Kinases 4 and 6 Dual Inhibitors via 3D-QSAR and Molecular Simulation[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220310. doi: 10.14102/j.cnki.0254-5861.2011-3270 shu

Discovery of 4-Thiazol-N-(pyridin-2-yl)pyrimidin-2-amine as Novel Cyclin-dependent Kinases 4 and 6 Dual Inhibitors via 3D-QSAR and Molecular Simulation

  • Corresponding author: Mao SHU, shumao@cqut.edu.cn Zhi-Hua LIN, zhlin@cqut.edu.cn
  • Received Date: 27 May 2021
    Accepted Date: 27 July 2021

    Fund Project: the key project of Chongqing Natural Science Foundation cstc2015jcyjBX0080

Figures(12)

  • Cyclin D dependent kinases 4/6 regulate the entry of cells into S phase and are effective target for the discovery of anticancer drugs. In this article, 3D-QSAR modeling including comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis fields (CoMSIA) was implemented on 52 dual CDK4/6 inhibitors. As a result, we obtained a pretty good 3D-QSAR model, which is CoMFACDK4 with q2 to be 0.543 and r2 to be 0.967; CoMSIACDK4 with q2 being 0.518 and r2 being 0.937; CoMFACDK6 with q2 to be 0.624 and r2 to be 0.984; CoMSIACDK6 with q2 being 0.584 and r2 being 0.975. Molecular docking confirmed the important residues for interactions. Molecular dynamics simulation further confirmed binding affinity with key residues of protein, such as Lys22, Lys35, Val96 for CDK4 and Lys43, His100, Val101 for CDK6 at the active sites. Then these results offered new directions to explore new inhibitors of CDK4/6. Finally, we designed 10 novel compounds with promising expected activity and ADME/T properties, and provided referable synthetic routes.
  • 加载中
    1. [1]

      Shapiro, G. I. Cyclin-dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol. 2006, 24, 1770–1783.  doi: 10.1200/JCO.2005.03.7689

    2. [2]

      Bartek, J.; Bartkova, J.; Lukas, J. The retinoblastoma protein pathway in cell cycle control and cancer. Exp. Cell. Res. 1997, 237, 1–6.  doi: 10.1006/excr.1997.3776

    3. [3]

      Nevins, J. R. The Rb/E2F pathway and cancer. Hum. Mol. Genet. 2001, 10, 699–703.  doi: 10.1093/hmg/10.7.699

    4. [4]

      Griggs, J. J.; Wolff, A. C. Cyclin-dependent kinase 4/6 inhibitors in the treatment of breast cancer: More breakthroughs and an embarrassment of riches. J. Clin. Oncol. 2017, 35, 2857–2859.  doi: 10.1200/JCO.2017.73.9375

    5. [5]

      Boér, K. Impact of palbociclib combinations on treatment of advanced estrogen receptor-positive/human epidermal growth factor 2-negative breast cancer. Onco. Targets. Ther. 2016, 9, 6119–6125.  doi: 10.2147/OTT.S77033

    6. [6]

      Cunningham, N. C.; Turner, N. C. Understanding divergent trial results of adjuvant CDK4/6 inhibitors for early stage breast cancer. Cancer Cell 2021, 39, 307–309.  doi: 10.1016/j.ccell.2021.02.011

    7. [7]

      Kwapisz, D. Cyclin-dependent kinase 4/6 inhibitors in breast cancer: palbociclib, ribociclib, and abemaciclib. Breast Cancer Res. Treat. 2017, 166, 41–54.  doi: 10.1007/s10549-017-4385-3

    8. [8]

      Shan, H.; Ma, X.; Yan, G.; Luo, M.; Zhong, X.; Lan, S.; Yang, J.; Liu, Y.; Pu, C.; Tong, Y. Discovery of a novel covalent CDK4/6 inhibitor based on palbociclib scaffold. Eur. J. Med. Chem. 2021, 219, 113432–113440.  doi: 10.1016/j.ejmech.2021.113432

    9. [9]

      Tadesse, S.; Zhu, G.; Mekonnen, L. B.; Jimma, L. L.; Yu, M.; Brown, M. P.; Wang, S. A novel series of N-(pyridin-2-yl)-4-(thiazol-5-yl)pyrimidin-2-amines as highly potent CDK4/6 inhibitors. Future Med. Chem. 2017, 13, 1495–1506.

    10. [10]

      Tadesse, S.; Yu, M.; Mekonnen, L. B.; Lam, F.; Islam, S.; Tomusange, K.; Rahaman, M. H.; Noll, B.; Basnet, S. K. C.; Teo, T. Highly potent, selective, and orally bioavailable 4-thiazol-n-(pyridin-2-yl)pyrimidin-2-amine cyclin-dependent kinases 4 and 6 inhibitors as anticancer drug candidates: Design, synthesis, and evaluation. J. Med. Chem. 2017, 60, 1892–1915.  doi: 10.1021/acs.jmedchem.6b01670

    11. [11]

      Tadesse, S.; Bantie, L.; Tomusange, K.; Yu, M.; Islam, S.; Bykovska, N.; Noll, B.; Zhu, G.; Li, P.; Lam, F. Discovery and pharmacological characterization of a novel series of highly selective inhibitors of cyclin-dependent kinases 4 and 6 as anticancer agents. Brit. J. Pharmacol. 2018, 175, 2399–2413.  doi: 10.1111/bph.13974

    12. [12]

      John, E. B. Sybyl-X, Molecular modeling software packages, Version 2.0. TRIPOS, Associates, Inc., St. Louis, MO, USA 2012.

    13. [13]

      Fu, L.; Chen, Y.; Xu, C. M.; Wu, T.; Guo, H. M.; Lin, Z. H.; Wang, R., Shu, M. 3D-QSAR, HQSAR, molecular docking, and new compound design study of 1, 3, 6-trisubstituted 1, 4-diazepan-7-ones as human KLK7 inhibitors. Med. Chem. Res. 2020, 29, 1012–1029.  doi: 10.1007/s00044-020-02542-3

    14. [14]

      Romero-Parra, J.; Chung, H.; Tapia, R. A.; Faúndez, M.; Morales-Verdejo, C.; Lorca, M.; Lagos, C. F.; Di Marzo, V.; David Pessoa-Mahana, C.; Mella, J. Combined CoMFA and CoMSIA 3D-QSAR study of benzimidazole and benzothiophene derivatives with selective affinity for the CB2 cannabinoid receptor. Eur. J. Pharm. Sci. 2017, 101, 1–10.  doi: 10.1016/j.ejps.2017.01.037

    15. [15]

      Manouchehrizadeh, E.; Mostoufi, A.; Tahanpesar, E.; Fereidoonnezhad, M. Alignment-independent 3D-QSAR and molecular docking studies of tacrine-4-oxo-4H-Chromene hybrids as anti-Alzheimer's agents. Comput. Biol. Chem. 2019, 80, 463–471.  doi: 10.1016/j.compbiolchem.2019.05.010

    16. [16]

      Fu, L.; Chen, Y.; Guo, H. M.; Xu, L.; Tan, M. N.; Dong, Y.; Shu, M.; Wang, R.; Lin, Z. H A selectivity study of polysubstituted pyridinylimidazoles as dual inhibitors of JNK3 and p38α MAPK based on 3D-QSAR, molecular docking, and molecular dynamics simulation. Struct. Chem. 2021, 32, 819–834.  doi: 10.1007/s11224-020-01668-9

    17. [17]

      Farrugia, L. J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854.  doi: 10.1107/S0021889812029111

    18. [18]

      Clark, M.; Cramer, R. D.; Jones, D. M.; Patterson, D. E.; Simeroth, P. E. Comparative molecular field analysis (CoMFA). 2. Toward its use with 3D-structural databases. Tetrahedron Comput. Methodol. 1990, 3, 47–59.  doi: 10.1016/0898-5529(90)90120-W

    19. [19]

      Klebe, G.; Abraham, U. Comparative molecular similarity index analysis (CoMSIA) to study hydrogen-bonding properties and to score combinatorial libraries. J. Comput. Aid. Mol. Des. 1999, 13, 1–10.  doi: 10.1023/A:1008047919606

    20. [20]

      Bush, B.; Nachbar, R. J. Sample-distance partial least squares: PLS optimized for many variables, with application to CoMFA. J. Comput. Aid. Mol. Des. 1993, 7, 587–619.  doi: 10.1007/BF00124364

    21. [21]

      Wendt, B.; Cramer, R. Challenging the gold standard for 3D-QSAR: template CoMFA versus X-ray alignment. J. Comput. Aid. Mol. Des. 2014, 28, 803–824.  doi: 10.1007/s10822-014-9761-z

    22. [22]

      Gu, C.; Goodarzi, M.; Yang, X.; Bian, Y.; Sun, C.; Jiang, X. Predictive insight into the relationship between AhR binding property and toxicity of polybrominated diphenyl ethers by PLS-derived QSAR. Toxicol. Lett. 2012, 208, 269–274.  doi: 10.1016/j.toxlet.2011.11.010

    23. [23]

      Jian-Feng, L.; Li-Min, L. Structural characterization and aquatic toxicity prediction of esters. Chin. J. Struct. Chem. 2021, 40, 711–721.

    24. [24]

      Jing, P.; Zhao, S.; Ruan, S.; Sui, Z.; Chen, L.; Jiang, L.; Qian, B. Quantitative studies on structure–ORAC relationships of anthocyanins from eggplant and radish using 3D-QSAR. Food Chem. 2014, 145, 365–371.  doi: 10.1016/j.foodchem.2013.08.082

    25. [25]

      Lei, Z.; Keng-Chang, T.; Lupei, D.; Hao, F.; Minyong, L.; Wenfang, X. How to generate reliable and predictive CoMFA models. Curr. Med. Chem. 2011, 18, 923–930.  doi: 10.2174/092986711794927702

    26. [26]

      Kar, S.; Roy, K.; Leszczynski, J. Applicability domain: a step toward confident predictions and decidability for QSAR modeling. Comput. Toxicol. 2018, 1800, 141–169.

    27. [27]

      Tian, Y.; Zhang, S.; Yin, H.; Yan, A. Quantitative structure-activity relationship (QSAR) models and their applicability domain analysis on HIV-1 protease inhibitors by machine learning methods. Chemometr. Intell. Lab. 2020, 196, 103888–103892.  doi: 10.1016/j.chemolab.2019.103888

    28. [28]

      Cruciani, G.; Baroni, M.; Clementi, S.; Costantino, G.; Riganelli, D.; Skagerberg, B. Predictive ability of regression models. Part I: Standard deviation of prediction errors (SDEP). J. Chemometr. 1992, 6, 335–346  doi: 10.1002/cem.1180060604

    29. [29]

      Tosco, P.; Balle, T. A 3D-QSAR-driven approach to binding mode and affinity prediction. J. Chem. Inf. Model. 2012, 52, 302–307.  doi: 10.1021/ci200411s

    30. [30]

      Warren, L. D. The PyMOL Molecular Graphics System, Version 2.4, Schrödinger, LLC., New York, USA 2020.

    31. [31]

      Jason, B. Discovery Studio Modelling Environment, Version 3.0, Accelrys Software, Inc., San Diego, CA 92121, USA 2012.

    32. [32]

      Götz, A. W.; Williamson, M. J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J. Chem. Theory Comput. 2012, 8, 1542–1555.  doi: 10.1021/ct200909j

    33. [33]

      Salomon-Ferrer, R.; Götz, A. W.; Poole, D.; Le Grand, S.; Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878–3888.  doi: 10.1021/ct400314y

    34. [34]

      Sprenger, K. G.; Jaeger, V. W.; Pfaendtner, J. The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J. Phys. Chem. B 2015, 119, 5882–5895.  doi: 10.1021/acs.jpcb.5b00689

    35. [35]

      Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010, 78, 1950–1958.  doi: 10.1002/prot.22711

    36. [36]

      Sun, H.; Duan, L.; Chen, F.; Liu, H.; Wang, Z.; Pan, P.; Zhu, F.; Zhang, J. Z. H.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches. Phys. Chem. Chem. Phys. 2018, 20, 14450–14460.  doi: 10.1039/C7CP07623A

    37. [37]

      Huang, K.; Luo, S.; Cong, Y.; Zhong, S.; Zhang, J. Z. H.; Duan, L. An accurate free energy estimator: based on MM/PBSA combined with interaction entropy for protein-ligand binding affinity. Nanoscale 2020, 12, 10737–10750.  doi: 10.1039/C9NR10638C

    38. [38]

      Zekri, A.; Harkati, D.; Kenouche, S.; Saleh, B. A. QSAR modeling, docking, ADME and reactivity of indazole derivatives as antagonizes of estrogen receptor alpha (ER-α) positive in breast cancer. J. Mol. Struct. 2020, 1217, 128442–128448.  doi: 10.1016/j.molstruc.2020.128442

    39. [39]

      Abdizadeh, T.; Ghodsi, R.; Hadizadeh, F. 3D-QSAR (CoMFA, CoMSIA) and molecular docking studies on histone deacetylase 1 selective inhibitors. Recent Pat. Anti-Canc. 2017, 12, 365–383.

  • 加载中
    1. [1]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    2. [2]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    3. [3]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    4. [4]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    5. [5]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    6. [6]

      Cheng-Zhe GaoHao-Ran JiaTian-Yu WangXiao-Yu ZhuXiaofeng HanFu-Gen Wu . A dual drug-loaded tumor vasculature-targeting liposome for tumor vasculature disruption and hypoxia-enhanced chemotherapy. Chinese Chemical Letters, 2025, 36(1): 109840-. doi: 10.1016/j.cclet.2024.109840

    7. [7]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    8. [8]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    9. [9]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    10. [10]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    11. [11]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    12. [12]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    13. [13]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    14. [14]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    15. [15]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    16. [16]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    17. [17]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    18. [18]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    19. [19]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    20. [20]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

Metrics
  • PDF Downloads(9)
  • Abstract views(721)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return