Discovery of 4-Thiazol-N-(pyridin-2-yl)pyrimidin-2-amine as Novel Cyclin-dependent Kinases 4 and 6 Dual Inhibitors via 3D-QSAR and Molecular Simulation
- Corresponding author: Mao SHU, shumao@cqut.edu.cn Zhi-Hua LIN, zhlin@cqut.edu.cn
Citation: Le FU, Li-Nan ZHAO, Hong-Mei GUO, Na YU, Wen-Xuan QUAN, Yi CHEN, Mao SHU, Rui WANG, Zhi-Hua LIN. Discovery of 4-Thiazol-N-(pyridin-2-yl)pyrimidin-2-amine as Novel Cyclin-dependent Kinases 4 and 6 Dual Inhibitors via 3D-QSAR and Molecular Simulation[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220310. doi: 10.14102/j.cnki.0254-5861.2011-3270
Shapiro, G. I. Cyclin-dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol. 2006, 24, 1770–1783.
doi: 10.1200/JCO.2005.03.7689
Bartek, J.; Bartkova, J.; Lukas, J. The retinoblastoma protein pathway in cell cycle control and cancer. Exp. Cell. Res. 1997, 237, 1–6.
doi: 10.1006/excr.1997.3776
Nevins, J. R. The Rb/E2F pathway and cancer. Hum. Mol. Genet. 2001, 10, 699–703.
doi: 10.1093/hmg/10.7.699
Griggs, J. J.; Wolff, A. C. Cyclin-dependent kinase 4/6 inhibitors in the treatment of breast cancer: More breakthroughs and an embarrassment of riches. J. Clin. Oncol. 2017, 35, 2857–2859.
doi: 10.1200/JCO.2017.73.9375
Boér, K. Impact of palbociclib combinations on treatment of advanced estrogen receptor-positive/human epidermal growth factor 2-negative breast cancer. Onco. Targets. Ther. 2016, 9, 6119–6125.
doi: 10.2147/OTT.S77033
Cunningham, N. C.; Turner, N. C. Understanding divergent trial results of adjuvant CDK4/6 inhibitors for early stage breast cancer. Cancer Cell 2021, 39, 307–309.
doi: 10.1016/j.ccell.2021.02.011
Kwapisz, D. Cyclin-dependent kinase 4/6 inhibitors in breast cancer: palbociclib, ribociclib, and abemaciclib. Breast Cancer Res. Treat. 2017, 166, 41–54.
doi: 10.1007/s10549-017-4385-3
Shan, H.; Ma, X.; Yan, G.; Luo, M.; Zhong, X.; Lan, S.; Yang, J.; Liu, Y.; Pu, C.; Tong, Y. Discovery of a novel covalent CDK4/6 inhibitor based on palbociclib scaffold. Eur. J. Med. Chem. 2021, 219, 113432–113440.
doi: 10.1016/j.ejmech.2021.113432
Tadesse, S.; Zhu, G.; Mekonnen, L. B.; Jimma, L. L.; Yu, M.; Brown, M. P.; Wang, S. A novel series of N-(pyridin-2-yl)-4-(thiazol-5-yl)pyrimidin-2-amines as highly potent CDK4/6 inhibitors. Future Med. Chem. 2017, 13, 1495–1506.
Tadesse, S.; Yu, M.; Mekonnen, L. B.; Lam, F.; Islam, S.; Tomusange, K.; Rahaman, M. H.; Noll, B.; Basnet, S. K. C.; Teo, T. Highly potent, selective, and orally bioavailable 4-thiazol-n-(pyridin-2-yl)pyrimidin-2-amine cyclin-dependent kinases 4 and 6 inhibitors as anticancer drug candidates: Design, synthesis, and evaluation. J. Med. Chem. 2017, 60, 1892–1915.
doi: 10.1021/acs.jmedchem.6b01670
Tadesse, S.; Bantie, L.; Tomusange, K.; Yu, M.; Islam, S.; Bykovska, N.; Noll, B.; Zhu, G.; Li, P.; Lam, F. Discovery and pharmacological characterization of a novel series of highly selective inhibitors of cyclin-dependent kinases 4 and 6 as anticancer agents. Brit. J. Pharmacol. 2018, 175, 2399–2413.
doi: 10.1111/bph.13974
John, E. B. Sybyl-X, Molecular modeling software packages, Version 2.0. TRIPOS, Associates, Inc., St. Louis, MO, USA 2012.
Fu, L.; Chen, Y.; Xu, C. M.; Wu, T.; Guo, H. M.; Lin, Z. H.; Wang, R., Shu, M. 3D-QSAR, HQSAR, molecular docking, and new compound design study of 1, 3, 6-trisubstituted 1, 4-diazepan-7-ones as human KLK7 inhibitors. Med. Chem. Res. 2020, 29, 1012–1029.
doi: 10.1007/s00044-020-02542-3
Romero-Parra, J.; Chung, H.; Tapia, R. A.; Faúndez, M.; Morales-Verdejo, C.; Lorca, M.; Lagos, C. F.; Di Marzo, V.; David Pessoa-Mahana, C.; Mella, J. Combined CoMFA and CoMSIA 3D-QSAR study of benzimidazole and benzothiophene derivatives with selective affinity for the CB2 cannabinoid receptor. Eur. J. Pharm. Sci. 2017, 101, 1–10.
doi: 10.1016/j.ejps.2017.01.037
Manouchehrizadeh, E.; Mostoufi, A.; Tahanpesar, E.; Fereidoonnezhad, M. Alignment-independent 3D-QSAR and molecular docking studies of tacrine-4-oxo-4H-Chromene hybrids as anti-Alzheimer's agents. Comput. Biol. Chem. 2019, 80, 463–471.
doi: 10.1016/j.compbiolchem.2019.05.010
Fu, L.; Chen, Y.; Guo, H. M.; Xu, L.; Tan, M. N.; Dong, Y.; Shu, M.; Wang, R.; Lin, Z. H A selectivity study of polysubstituted pyridinylimidazoles as dual inhibitors of JNK3 and p38α MAPK based on 3D-QSAR, molecular docking, and molecular dynamics simulation. Struct. Chem. 2021, 32, 819–834.
doi: 10.1007/s11224-020-01668-9
Farrugia, L. J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854.
doi: 10.1107/S0021889812029111
Clark, M.; Cramer, R. D.; Jones, D. M.; Patterson, D. E.; Simeroth, P. E. Comparative molecular field analysis (CoMFA). 2. Toward its use with 3D-structural databases. Tetrahedron Comput. Methodol. 1990, 3, 47–59.
doi: 10.1016/0898-5529(90)90120-W
Klebe, G.; Abraham, U. Comparative molecular similarity index analysis (CoMSIA) to study hydrogen-bonding properties and to score combinatorial libraries. J. Comput. Aid. Mol. Des. 1999, 13, 1–10.
doi: 10.1023/A:1008047919606
Bush, B.; Nachbar, R. J. Sample-distance partial least squares: PLS optimized for many variables, with application to CoMFA. J. Comput. Aid. Mol. Des. 1993, 7, 587–619.
doi: 10.1007/BF00124364
Wendt, B.; Cramer, R. Challenging the gold standard for 3D-QSAR: template CoMFA versus X-ray alignment. J. Comput. Aid. Mol. Des. 2014, 28, 803–824.
doi: 10.1007/s10822-014-9761-z
Gu, C.; Goodarzi, M.; Yang, X.; Bian, Y.; Sun, C.; Jiang, X. Predictive insight into the relationship between AhR binding property and toxicity of polybrominated diphenyl ethers by PLS-derived QSAR. Toxicol. Lett. 2012, 208, 269–274.
doi: 10.1016/j.toxlet.2011.11.010
Jian-Feng, L.; Li-Min, L. Structural characterization and aquatic toxicity prediction of esters. Chin. J. Struct. Chem. 2021, 40, 711–721.
Jing, P.; Zhao, S.; Ruan, S.; Sui, Z.; Chen, L.; Jiang, L.; Qian, B. Quantitative studies on structure–ORAC relationships of anthocyanins from eggplant and radish using 3D-QSAR. Food Chem. 2014, 145, 365–371.
doi: 10.1016/j.foodchem.2013.08.082
Lei, Z.; Keng-Chang, T.; Lupei, D.; Hao, F.; Minyong, L.; Wenfang, X. How to generate reliable and predictive CoMFA models. Curr. Med. Chem. 2011, 18, 923–930.
doi: 10.2174/092986711794927702
Kar, S.; Roy, K.; Leszczynski, J. Applicability domain: a step toward confident predictions and decidability for QSAR modeling. Comput. Toxicol. 2018, 1800, 141–169.
Tian, Y.; Zhang, S.; Yin, H.; Yan, A. Quantitative structure-activity relationship (QSAR) models and their applicability domain analysis on HIV-1 protease inhibitors by machine learning methods. Chemometr. Intell. Lab. 2020, 196, 103888–103892.
doi: 10.1016/j.chemolab.2019.103888
Cruciani, G.; Baroni, M.; Clementi, S.; Costantino, G.; Riganelli, D.; Skagerberg, B. Predictive ability of regression models. Part I: Standard deviation of prediction errors (SDEP). J. Chemometr. 1992, 6, 335–346
doi: 10.1002/cem.1180060604
Tosco, P.; Balle, T. A 3D-QSAR-driven approach to binding mode and affinity prediction. J. Chem. Inf. Model. 2012, 52, 302–307.
doi: 10.1021/ci200411s
Warren, L. D. The PyMOL Molecular Graphics System, Version 2.4, Schrödinger, LLC., New York, USA 2020.
Jason, B. Discovery Studio Modelling Environment, Version 3.0, Accelrys Software, Inc., San Diego, CA 92121, USA 2012.
Götz, A. W.; Williamson, M. J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J. Chem. Theory Comput. 2012, 8, 1542–1555.
doi: 10.1021/ct200909j
Salomon-Ferrer, R.; Götz, A. W.; Poole, D.; Le Grand, S.; Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878–3888.
doi: 10.1021/ct400314y
Sprenger, K. G.; Jaeger, V. W.; Pfaendtner, J. The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J. Phys. Chem. B 2015, 119, 5882–5895.
doi: 10.1021/acs.jpcb.5b00689
Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010, 78, 1950–1958.
doi: 10.1002/prot.22711
Sun, H.; Duan, L.; Chen, F.; Liu, H.; Wang, Z.; Pan, P.; Zhu, F.; Zhang, J. Z. H.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches. Phys. Chem. Chem. Phys. 2018, 20, 14450–14460.
doi: 10.1039/C7CP07623A
Huang, K.; Luo, S.; Cong, Y.; Zhong, S.; Zhang, J. Z. H.; Duan, L. An accurate free energy estimator: based on MM/PBSA combined with interaction entropy for protein-ligand binding affinity. Nanoscale 2020, 12, 10737–10750.
doi: 10.1039/C9NR10638C
Zekri, A.; Harkati, D.; Kenouche, S.; Saleh, B. A. QSAR modeling, docking, ADME and reactivity of indazole derivatives as antagonizes of estrogen receptor alpha (ER-α) positive in breast cancer. J. Mol. Struct. 2020, 1217, 128442–128448.
doi: 10.1016/j.molstruc.2020.128442
Abdizadeh, T.; Ghodsi, R.; Hadizadeh, F. 3D-QSAR (CoMFA, CoMSIA) and molecular docking studies on histone deacetylase 1 selective inhibitors. Recent Pat. Anti-Canc. 2017, 12, 365–383.
Bairu Meng , Zongji Zhuo , Han Yu , Sining Tao , Zixuan Chen , Erik De Clercq , Christophe Pannecouque , Dongwei Kang , Peng Zhan , Xinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827
Yan Cheng , Hua-Peng Ruan , Yan Peng , Longhe Li , Zhenqiang Xie , Lang Liu , Shiyong Zhang , Hengyun Ye , Zhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554
Zixi Zou , Jingyuan Wang , Yian Sun , Qian Wang , Da-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972
Huimin Gao , Zhuochen Yu , Xuze Zhang , Xiangkun Yu , Jiyuan Xing , Youliang Zhu , Hu-Jun Qian , Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266
Keke Han , Wenjun Rao , Xiuli You , Haina Zhang , Xing Ye , Zhenhong Wei , Hu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4−, ReO4−). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
Fengjie Liu , Fansu Meng , Zhenjiang Yang , Huan Wang , Yuehong Ren , Yu Cai , Xingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
Hualei Xu , Manman Han , Haiqiang Liu , Liang Qin , Lulu Chen , Hao Hu , Ran Wu , Chenyu Yang , Hua Guo , Jinrong Li , Jinxiang Fu , Qichen Hao , Yijun Zhou , Jinchao Feng , Xiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
Shiyu Hou , Maolin Sun , Liming Cao , Chaoming Liang , Jiaxin Yang , Xinggui Zhou , Jinxing Ye , Ruihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761
Yiran Tao , Chunlei Dai , Zhaoxiang Xie , Xinru You , Kaiwen Li , Jun Wu , Hai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
Yuexi Guo , Zhaoyang Li , Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
Reagents and conditions: (a) CS2, NEt3, Boc2O, DMAP, EtOH, rt, 30 min, ice bath, 15 min, rt, 30 min; (b) NH3, H2O, MeOH, rt, 24 h; (c) ethyl-2-chloroacetoacetate, DMAP, CH2Cl2, rt, 4 h; (d) di-tert-butyl dicarbonate, DCM, Et3N, 8 h, rt; (e) LiNiPr2, CH3CN, –78 ℃, 10 min; o/n, HCl, H2O, 48%; (f) DMF-DMA, reflux, 8 h; (g) 5-bromo-2-nitropyridine, DMSO, Et3N, 120 ℃, 16 h; (h) H2, 10%Pd/C, CH3OH, 6.5~12 h, rt; (i) N, N΄-bis-Boc-S-methylisothiourea, Et3N, HgCl2, DCM, 0 ℃, 0.5 h, rt, 14 h; (j) TFA/DCM/H2O (18:9:1), rt, 16 h; (k) NaOH, 2-methoxyethanol, microwave, 180 ℃, 1 h