Citation: Jian-Bo TONG, Xing ZHANG, Shuai BIAN, Ding LUO. Drug Design, Molecular Docking, and ADMET Prediction of CCR5 Inhibitors Based on QSAR Study[J]. Chinese Journal of Structural Chemistry, ;2022, 41(2): 220200. doi: 10.14102/j.cnki.0254-5861.2011-3268 shu

Drug Design, Molecular Docking, and ADMET Prediction of CCR5 Inhibitors Based on QSAR Study

  • Corresponding author: Jian-Bo TONG, jianbotong@aliyun.com
  • Received Date: 27 May 2021
    Accepted Date: 5 July 2021

    Fund Project: Innovation Supporting Plan of Shaanxi Province—Innovation Research Team 2018TD-015the Natural Science Foundation of Shaanxi Province 2019JM-237

Figures(11)

  • The chemokine receptor CCR5 is a main and necessary co-receptor for which HIV can recognize and enter the cells, and has been identified as a potential new target for the design of new anti-HIV therapeutic drugs. Highly active CCR5 inhibitors can prevent HIV-1 from entering target cells and block the process of infection. In this study, HQSAR and Topomer CoMFA methods were used to establish QSAR models for 75 1-(3, 3-diphenylpropyl)-piperidinyl and urea derivatives, and cross-validation and non-cross-validation were performed on the generated models. Two models with good statistical parameters and reliable prediction capabilities are obtained: (Topomer CoMFA: q2 = 0.687, r2 = 0.868, rpred2 = 0.623; HQSAR: q2 = 0.781, r2 = 0.921, rpred2 = 0.636). Contour maps and color code maps provide a lot of useful information for determining structural requirements that affect activity. Topomer search technology was used for virtual screening and molecular design. Surfex-dock method and ADMET technology were used to conduct molecular docking, oral bioavailability and toxicity prediction of the designed drug molecules. Results showed that A/ASN425, A/GLY198 and A/TRP427 may be the potential active residues of CCR5 inhibitors evaluated in this study, with 40 newly designed 1-(3, 3-diphenylpropyl)-piperidinyl and urea derivatives which have the main ADMET properties and can be used as a reliable anti-HIV inhibitor. These results provide a certain theoretical basis for the experimental verification of new compounds in the future.
  • 加载中
    1. [1]

      Qian, Y. J.; Wu, Z. Y.; Chen, C.; Du, K. F.; Wei, W. B. Detection of HIV-1 viral load in tears of HIV/AIDS patients. Infection 2020, 48, 929–933.  doi: 10.1007/s15010-020-01508-2

    2. [2]

      Gao, R.; Fang, Q. J.; Zhang, X.; Xu, Q.; Ye, H. H.; Guo, W. Y.; He, J.; Chen, Y. H.; Wang, R. X.; Wu, Z. J; Yu, J. R5 HIV-1 gp120 activates p38 MAPK to induce rat cardiomyocyte injury by the CCR5 coreceptor. Pathobiology 2019, 86, 274–284.  doi: 10.1159/000502238

    3. [3]

      Hemkens, L. G.; Bucher, H. C. HIV infection and cardiovascular disease. Eur. Heart. J. 2014, 35, 1373–1381.  doi: 10.1093/eurheartj/eht528

    4. [4]

      Moore, J. P.; Stevenson, M. New targets for inhibitors of HIV-1 replication. Nat. Rev. Mol. Cell Bio. 2000, 1, 40–49.  doi: 10.1038/35036060

    5. [5]

      Wells, T. N. C.; Proudfoot, A. E.; Power, C. A. Chemokine receptors-the new frontier for AIDS research. Cell Chem. Biol. 1996, 3, 603−609.

    6. [6]

      Palani, A.; Shapiro, S.; Clader, J. W. Biological evaluation and interconversion studies of rotamers of SCH 351125, an orally bioavailable CCR5 antagonist. Bioogr. Med. Chem. Lett. 2003, 13, 705–708.  doi: 10.1016/S0960-894X(02)01062-4

    7. [7]

      Shahlaei, M.; Fassihi, A. QSAR analysis of some 1-(3, 3-diphenylpropyl)-piperidinyl amides and ureas as CCR5 inhibitors using genetic algorithm-least square support vector machine. Med. Chem. Res. 2013, 22, 4384–4400.  doi: 10.1007/s00044-012-0430-2

    8. [8]

      Heravi, Y. E.; Sereshti, H.; Saboury, A. A. 3D QSAR studies, pharmacophore modeling, and virtual screening of diarylpyrazole-benzenesulfonamide derivatives as a template to obtain new inhibitors, using human carbonic anhydrase II as a model protein. J. Enzyme Inhib. Med. Chem. 2017, 32, 688−700.  doi: 10.1080/14756366.2016.1241781

    9. [9]

      Zheng, X.; He, M. X.; Tan, X.; Zheng, J.; Wang, F. Y.; Liu, S. 3D-quantitative structure-activity relationship and docking studies of coumarin derivatives as tissue kallikrein 7 inhibitors. J. Pharm. Pharmacol. 2017, 69, 1136−1144.  doi: 10.1111/jphp.12751

    10. [10]

      Li, S. L.; Bao, X. F.; Lu, C. H.; Ren, C. R.; Liu, G. C.; Du, H. G. Essential structural profile of novel adenosine derivatives as antiplatelet aggregation inhibitors based on 3D-QSAR analysis using CoMFA, CoMSIA, and SOMFA. Russ. J. Bioorg. Chem+. 2020, 46, 448−457.  doi: 10.1134/S1068162020030103

    11. [11]

      Fu, L.; Chen, Y.; Xu, C. M. 3D-QSAR, HQSAR, molecular docking, and new compound design study of 1, 3, 6-trisubstituted 1, 4-diazepan-7-ones as human KLK7 inhibitors. Med. Chem. Res. 2020, 29, 1012–1029.  doi: 10.1007/s00044-020-02542-3

    12. [12]

      Tong, J. B.; Shan, L.; Qin, S. S. QSAR studies of TIBO derivatives as HIV-1 reverse transcriptase inhibitors using HQSAR, CoMFA and CoMSIA. J. Mol. Struct. 2018, 1168, 56–64.  doi: 10.1016/j.molstruc.2018.05.005

    13. [13]

      Cheng, Y.; Mei, Z.; Tung, C. H. Studies on two types of PTP1β inhibitors for the treatment of type 2 diabetes: hologram QSAR for OBA and BBB analogues. Bioorg. Med. Chem. Lett. 2010, 20, 3329–3337.  doi: 10.1016/j.bmcl.2010.04.033

    14. [14]

      Castilho, M. S.; Postigo, M. P.; Montanari, C. A.; Oliva, G.; Andricopulo, A. D. Two- and three-dimensional quantitative structure-activity relationships for a series of purine nucleoside phosphorylase inhibitors. Bioorgan. Med. Chem. 2006, 14, 516−527.  doi: 10.1016/j.bmc.2005.08.055

    15. [15]

      Cumming, J. G.; Cooper, A. E.; Grime, K.; Logan, C. J.; McLaughlin, S.; Oldfield, J.; Shaw, J. S.; Tucker, H.; Winter, J.; Whittaker, D. Modulators of the human CCR5 receptor. Part 2: SAR of substituted 1-(3, 3-diphenylpropyl)-piperidinyl phenylacetamides. Bioorg. Med. Chem. Lett. 2005, 15, 5012–5015.  doi: 10.1016/j.bmcl.2005.08.014

    16. [16]

      Burrows, J. N.; Cumming, J. G.; Fillery, S. M.; Hamlin, G. A.; Hudson, J. A.; Jackson, R. J.; McLaughlin, S.; Shaw, J. S. Modulators of the human CCR5 receptor. Part 1: discovery and initial SAR of 1-(3, 3-diphenylpropyl)-piperidinyl amides and ureas. Bioorg. Med. Chem. Lett. 2005, 15, 25–28.  doi: 10.1016/j.bmcl.2004.10.044

    17. [17]

      Niu, B.; Lu, Y.; Wang, J. Y.; Hu, Y.; Chen, J. H.; Chen, Q.; He, G. W.; Zheng, L. F. 2D-SAR, Topomer CoMFA and molecular docking studies on avian influenza neuraminidase inhibitors. Comput. Struct. Biotec. 2019, 17, 39–48.  doi: 10.1016/j.csbj.2018.11.007

    18. [18]

      Zhu, W. L.; Chen, G.; Hu, L. H.; Luo, X. M.; Gui, C. S.; Luo, C.; Puah, C. M.; Chem, K. X.; Jiang, H. L. QSAR analyses on ginkgolides and their analogues using CoMFA, CoMSIA, and HQSAR. Bioorg. Med. Chem. 2005, 13, 313−322.  doi: 10.1016/j.bmc.2004.10.027

    19. [19]

      Huang, D. D.; Liu, Y. L.; Shi, B. Z.; Li, Y. T.; Wang, G. X.; Liang, G. Z. Comprehensive 3D-QSAR and binding mode of BACE-1 inhibitors using R-group search and molecular docking. J. Mol. Graph. Model. 2013, 45, 65−83.  doi: 10.1016/j.jmgm.2013.08.003

    20. [20]

      Shirmohammadi, M.; Mohammadinasab, E.; Bayat, Z. Prediction of lipophilicity of some quinolone derivatives by using quantitative structure-activity relationship. Curr. Drug. Discov. Technol. 2021, 18, 83–94.  doi: 10.2174/1570163816666191108145026

    21. [21]

      Xiang, Y. H.; Hou, Z. Y.; Zhang, Z. Y. Pharmacophore and QSAR studies to design novel histone deacetylase 2 inhibitors. Chem. Biol. Drug Des. 2012, 79, 760–770.  doi: 10.1111/j.1747-0285.2012.01341.x

    22. [22]

      Kiralj, R.; Ferreira, M. Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J. Brazil. Chem. Soc. 2009, 20, 770–787.  doi: 10.1590/S0103-50532009000400021

    23. [23]

      Aynur,  O. A.; Nina,  G. J.; Terry,  W. S.; Mark, T. D. C. The better predictive model: high q2 for the training set or low root mean square error of prediction for the test set? Mol. Inform. 2010, 24, 385–396.

    24. [24]

      Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model. 2002, 20, 269–276.  doi: 10.1016/S1093-3263(01)00123-1

    25. [25]

      Sterling, T.; Irwin, J. J. ZINC 15-ligand discovery for everyone. J. Chem. Inf. Model. 2015, 55, 2324-2337.  doi: 10.1021/acs.jcim.5b00559

    26. [26]

      Tripathi, A.; Bankaitis, V. A. Molecular docking: from lock and key to combination lock. J. Mol. Med. Clin. App. 2017, 2, 1–9.  doi: 10.1016/j.nhccr.2017.03.001

    27. [27]

      Dudutiene, V.; Zubriene, A.; Kairys, V.; Smirnov, A.; Smirnoviene, J.; Leitans, J.; Kazaks, A.; Tars, K.; Manakova, L.; Grazulis, S.; Matulis, D. Isoform-selective enzyme inhibitors by exploring pocket size according to the lock-and-key Principle. Biophys. J. 2020, 119, 1513–1524.  doi: 10.1016/j.bpj.2020.08.037

    28. [28]

      Liu, J.; Li, Y.; Zhang, H. X.; Zhang, S. W.; Yang, L. Studies of H4R antagonists using 3D-QSAR, molecular docking and molecular dynamics. J. Mol. Model. 2012, 18, 991–1001.  doi: 10.1007/s00894-011-1137-x

    29. [29]

      Cleves, A. E.; Jain, A. N. Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surfex-Dock. J. Comput. Aided. Mol. Des. 2015, 29, 485–509.  doi: 10.1007/s10822-015-9846-3

    30. [30]

      Tong, J. B.; Luo, D.; Bian, S.; Zhang, X. Structural investigation of tetrahydropteridin analogues as selective PLK1 inhibitors for treating cancer through combined QSAR techniques, molecular docking, and molecular dynamics simulations. J. Mol. Liq. 2021, 335, 116235–17.  doi: 10.1016/j.molliq.2021.116235

    31. [31]

      Zhang, X. Z.; Xu, Y.; Jian, M. M.; Yang, K.; Ma, Z. Y. Synthesis, in vitro assays, molecular docking, theoretical ADMET prediction, and evaluation of 4-methoxy-phenylthiazole-2-amine derivatives as acetylcholinesterase inhibitors. Med. Chem. Res. 2019, 28, 1683–1693.  doi: 10.1007/s00044-019-02405-6

    32. [32]

      Jain, A. N. Surfex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J. Comput. Aided. Mol. Des. 2007, 21, 281–306.  doi: 10.1007/s10822-007-9114-2

  • 加载中
    1. [1]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    2. [2]

      Wenfeng ShaoChuanlin LiChenggang WangGuangsen DuShunshun ZhaoGuangmeng QuYupeng XingTianshuo GuoHongfei LiXijin Xu . Stabilization of zinc anode by trace organic corrosion inhibitors for long lifespan. Chinese Chemical Letters, 2025, 36(3): 109531-. doi: 10.1016/j.cclet.2024.109531

    3. [3]

      Lu-Lu HeLan-Tu XiongXin WangYu-Zhen LiJia-Bao LiYu ShiXin DengZi-Ning Cui . Application of inhibitors targeting the type III secretion system in phytopathogenic bacteria. Chinese Chemical Letters, 2025, 36(4): 110044-. doi: 10.1016/j.cclet.2024.110044

    4. [4]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    5. [5]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    6. [6]

      Chunyu YanQinglong QiaoWei ZhouXuelian ZhouYonghui ChenLu MiaoZhaochao Xu . FRET-based in vitro assay for rapid detecting of SARS-CoV-2 entry inhibitors. Chinese Chemical Letters, 2025, 36(5): 110258-. doi: 10.1016/j.cclet.2024.110258

    7. [7]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

    8. [8]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    9. [9]

      Han YuanFengcai ZhangHongzhe HuangJiafei WuYi YangWanyi HuangDongjing YangZhuoming LiZhe LiLing HuangYi-You HuangHai-Bin LuoLei Guo . Discovery of 3-trifluoromethyl-substituted pyrazoles as selective phosphodiesterase 10A inhibitors for orally attenuating isoprenaline-induced cardiac hypertrophy. Chinese Chemical Letters, 2025, 36(4): 109965-. doi: 10.1016/j.cclet.2024.109965

    10. [10]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    11. [11]

      . . University Chemistry, 2024, 39(5): 0-0.

    12. [12]

      . 第41卷第5期封面和目次. Acta Physico-Chimica Sinica, 2025, 41(5): -.

    13. [13]

      . . University Chemistry, 2025, 40(5): 0-0.

    14. [14]

      Yang FengYang-Qing TianYong-Qiang ZhaoSheng-Jun ChenBi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656

    15. [15]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    16. [16]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    17. [17]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    18. [18]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    19. [19]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    20. [20]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

Metrics
  • PDF Downloads(2)
  • Abstract views(563)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return