Citation: Xin ZHANG, Zhen-Xia CHEN, Yong-Tai YANG, Ming-Li DENG, Lin-Hong WENG. Effect of Fluorination on the Crystal Structure, Stability and Gas Adsorption Property in Zinc(II) Metal-organic Frameworks[J]. Chinese Journal of Structural Chemistry, ;2022, 41(2): 220204. doi: 10.14102/j.cnki.0254-5861.2011-3264 shu

Effect of Fluorination on the Crystal Structure, Stability and Gas Adsorption Property in Zinc(II) Metal-organic Frameworks

  • Corresponding author: Ming-Li DENG, mldeng@fudan.edu.cn
  • Received Date: 22 May 2021
    Accepted Date: 23 July 2021

    Fund Project: the NSFC 21971045Natural Science Foundation of Shanghai 18ZR1402900the National Key Technologies R & D Program of China 2017YFA0205103Shanghai Leading Academic Discipline Project B108

Figures(5)

  • Three zinc(II) metal-organic frameworks (xF-MAC-3) have been synthesized by using Zn(II) salts, 3, 5-dimethyl-1H-1, 2, 4-triazole (Hdmtrz) and different fluorination degree carboxylate ligands, which are analogic structures and can be described as (6, 6)-connected pcu-b net. We find that the fluorine atoms have structural regulation effect on xF-MAC-3, which can not only enlarge the torsion angle ? of carboxylate ligands but also elevate the space group of structures. Besides, the CO2-273 K uptake increased from 23.21 cm3·g-1 (MAC-3) to 36.13 cm3·g-1 (4F-MAC-3) and H2-77 K uptake increased from 24.33 cm3·g-1 (MAC-3) to 59.79 cm3·g-1 (4F-MAC-3), which means fluorination can enhance the gas adsorption uptake of xF-MAC-3 analogues. Furthermore, the results of fluorination in xF-MAC-3 analogues offer a potential way to study the ligand pre-functionalization effect on the structures and properties of MOFs analogues.
  • 加载中
    1. [1]

      Batten, S. R.; Champness, N. R.; Chen, X. M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O'keeffe, M.; Suh, M. P.; Reedijk, J. Coordination polymers, metal-organic frameworks and the need for terminology guidelines. CrystEngComm. 2012, 14, 3001–3004.  doi: 10.1039/c2ce06488j

    2. [2]

      Batten, S. R.; Champness, N. R.; Chen, X. M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O'keeffe, M.; Paik Suh, M.; Reedijk, J. Terminology of metal-organic frameworks and coordination polymers (Iupac Recommendations 2013). Pure Appl. Chem. 2013, 85, 1715–1724.  doi: 10.1351/PAC-REC-12-11-20

    3. [3]

      Kalmutzki, M. J.; Hanikel, N.; Yaghi, O. M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 2018, 4, eaat9180.  doi: 10.1126/sciadv.aat9180

    4. [4]

      Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.  doi: 10.1039/b802426j

    5. [5]

      Zhao, X.; Wang, Y. X.; Li, D. S.; Bu, X. H.; Feng, P. Y. Metal-organic frameworks for separation. Adv. Mater. 2018, 30, 1705189.  doi: 10.1002/adma.201705189

    6. [6]

      Lin, R. B.; Xiang, S. C.; Xing, H. B.; Zhou, W.; Chen, B. L. Exploration of porous Metal-organic frameworks for gas separation and purification. Coord. Chem. Rev. 2019, 378, 87–103.  doi: 10.1016/j.ccr.2017.09.027

    7. [7]

      Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459.  doi: 10.1039/b807080f

    8. [8]

      Dhakshinamoorthy, A.; Li, Z. H.; Garcia, H. Catalysis and photocatalysis by metal organic frameworks. Chem. Soc. Rev. 2018, 47, 8134–8172.  doi: 10.1039/C8CS00256H

    9. [9]

      Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.  doi: 10.1002/adma.201703663

    10. [10]

      Chen, B. L.; Xiang, S. C.; Qian, G. D. Metal-organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res. 2010, 43, 1115–1124.  doi: 10.1021/ar100023y

    11. [11]

      Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.  doi: 10.1039/C6CS00930A

    12. [12]

      Wu, S. Y.; Min, H.; Shi, W.; Cheng, P. Multicenter metal-organic framework-based ratiometric fluorescent sensors. Adv. Mater. 2020, 32, 1805871.  doi: 10.1002/adma.201805871

    13. [13]

      Pachfule, P.; Banerjee, R. Fluorinated metal-organic frameworks (FMOFs): concept, construction, and properties. Encyclopedia of Inorganic and Bioinorganic Chemistry. New York; John Wiley & Sons, Ltd. 2014.

    14. [14]

      Schloder, T.; Kraus, F.; Riedel, S. Fluorides: solid-state chemistry. Encyclopedia of Inorganic and Bioinorganic Chemistry. New York; John Wiley & Sons, Ltd. 2014.

    15. [15]

      Noro, S.; Nakamura, T. Fluorine-functionalized metal-organic frameworks and porous coordination polymers. NPG Asia Mater. 2017, 9, e433.  doi: 10.1038/am.2017.165

    16. [16]

      Cadiau, A.; Adil, K.; Bhatt, P. M.; Belmabkhout, Y.; Eddaoudi, M. A metal-organic framework-based splitter for separating propylene from propane. Science 2016, 353, 137–140.  doi: 10.1126/science.aaf6323

    17. [17]

      Cui, X. L.; Chen, K. J.; Xing, H. B.; Yang, Q. W.; Krishna, R.; Bao, Z. B.; Wu, H.; Zhou, W.; Dong, X. L.; Han, Y.; Li, B.; Ren, Q. L.; Zaworotko, M. J.; Chen, B. L. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 2016, 353, 141–144.  doi: 10.1126/science.aaf2458

    18. [18]

      Cui, X. L.; Niu, Z.; Shan, C.; Yang, L. F.; Hu, J. B.; Wang, Q. J.; Lan, P. C.; Li, Y. J.; Wojtas, L.; Ma, S. Q.; Xing, H. B. Efficient separation of xylene isomers by a guest-responsive metal-organic framework with rotational anionic sites. Nat. Commun. 2020, 11, 5456–5463.  doi: 10.1038/s41467-020-19209-7

    19. [19]

      Lin, Z. T.; Liu, Q. Y.; Yang, L.; He, C. T.; Li, L.; Wang, Y. L. Fluorinated biphenyldicarboxylate-based metal-organic framework exhibiting efficient propyne/propylene separation. Inorg. Chem. 2020, 59, 4030–4036.  doi: 10.1021/acs.inorgchem.0c00003

    20. [20]

      Fujie, K.; Otsubo, K.; Ikeda, R.; Yamada, T.; Kitagawa, H. Low temperature ionic conductor: ionic liquid incorporated within a metal-organic framework. Chem. Sci. 2015, 6, 4306–4310.  doi: 10.1039/C5SC01398D

    21. [21]

      Yang, C.; Wang, X. P.; Omary, M. A. Fluorous metal-organic frameworks for high-density gas adsorption. J. Am. Chem. Soc. 2007, 129, 15454–12955.  doi: 10.1021/ja0775265

    22. [22]

      Zhang, D. S.; Chang, Z.; Li, Y. F.; Jiang, Z. Y.; Xuan, Z. H.; Zhang, Y. H.; Li, J. R.; Chen, Q.; Hu, T. L.; Bu, X. H. Fluorous metal-organic frameworks with enhanced stability and high H2/CO2 storage capacities. Sci. Rep. 2013, 3, 3312–3318.  doi: 10.1038/srep03312

    23. [23]

      Fan, W. D.; Liu, X. P.; Wang, X.; Li, Y.; Xing, C. Y.; Wang, Y. T.; Guo, W. Y.; Zhang, L. L.; Sun, D. F. A fluorine-functionalized microporous In-MOF with high physicochemical stability for light hydrocarbon storage and separation. Inorg. Chem. Front. 2018, 5, 2445–2449.  doi: 10.1039/C8QI00652K

    24. [24]

      Vimont, A.; Goupil, J. M.; Lavalley, J. C.; Daturi, M.; Surble, S.; Serre, C.; Millange, F.; Ferey, G.; Audebrand, N. Investigation of acid sites in a zeotypic giant pores chromium(III) carboxylate. J. Am. Chem. Soc. 2006, 128, 3218–3227.  doi: 10.1021/ja056906s

    25. [25]

      Peikert, K.; Hoffmann, F.; Froba, M. Fluorine magic: one new organofluorine linker leads to three new metal-organic frameworks. Crystengcomm. 2015, 17, 353–360.  doi: 10.1039/C4CE00408F

    26. [26]

      Fan, W. D.; Yuan, S.; Wang, W. J.; Feng, L.; Liu, X. P.; Zhang, X. R.; Wang, X.; Kang, Z. X.; Dai, F. N.; Yuan, D. Q.; Sun, D. F.; Zhou, H. C. Optimizing multivariate metal-organic frameworks for efficient C2H2/CO2 separation. J. Am. Chem. Soc. 2020, 142, 8728–8737.  doi: 10.1021/jacs.0c00805

    27. [27]

      Pachfule, P.; Chen, Y.; Jiang, J.; Banerjee, R. Fluorinated meta-organic frameworks: a dvantageous for higher H2 and CO2 adsorption or not? Chem. Eur. J. 2012, 18, 688–694.  doi: 10.1002/chem.201102295

    28. [28]

      Jasuja, H.; Burtch, N. C.; Huang, Y. G.; Cai, Y.; Walton, K. S. Kinetic water stability of an isostructural family of zinc-based pillared metal-organic frameworks. Langmuir 2013, 29, 633−642.  doi: 10.1021/la304204k

    29. [29]

      Cheplakova, A. M.; Kovalenko, K. A.; Vinogradov, A. S.; Karpov, V. M.; Platonov, V. E.; Fedin, V. P. A comparative study of perfluorinated and non-fluorinated UiO-67 in gas adsorption. J. Porous Mat. 2020, 27, 1773–1782.  doi: 10.1007/s10934-020-00941-w

    30. [30]

      Hulvey, Z.; Wragg, D. S.; Lin, Z. J.; Morris, R. E.; Cheetham, A. K. Ionothermal synthesis of inorganic-organic hybrid materials containing perfluorinated aliphatic dicarboxylate ligands. Dalton Trans. 2009, 1131–1135.

    31. [31]

      Hulvey, Z.; Falcao, E. H. L.; Eckert, J.; Cheetham, A. K. Enhanced H2 adsorption enthalpy in the low-surface area, partially fluorinated coordination polymer Zn5(triazole)6(tetrafluoroterephthalate)2(H2O)2·4H2O. J. Mater. Chem. 2009, 19, 4307–4309.  doi: 10.1039/b900879a

    32. [32]

      Hulvey, Z.; Ayala, E.; Furman, J. D.; Forster, P. M.; Cheetham, A. K. Structural diversity in coordination polymers composed of divalent transition metals, 2, 2΄-bipyridine, and perfluorinated dicarboxylates. Cryst. Growth Des. 2009, 9, 4759–4765.  doi: 10.1021/cg9006058

    33. [33]

      Ling, Y.; Chen, Z. X.; Zhai, F. P.; Zhou, Y. M.; Weng, L. H.; Zhao, D. Y. A zinc(II) metal-organic framework based on triazole and dicarboxylate ligands for selective adsorption of hexane isomers. Chem. Commun. 2011, 47, 7197–7199.  doi: 10.1039/c1cc12253c

    34. [34]

      Jones, R. L.; Rees, C. W. Mechanism of heterocyclic ring expansions. IV. Reaction of an imidazole, pyrazole, and 1, 2, 4-triazole with dichlorocarbene. J. Chem. Soc. C 1969, 2251–2255.

    35. [35]

      Person, D. V.; Fitch, J. W.; Cassidy, P. E.; Kono, K.; Reddy, V. S. Polymers from 2, 5-difluoroterephthalic acid. 1. Polyesters. React. Funct. Polym. 1996, 30, 141–147.  doi: 10.1016/1381-5148(95)00118-2

    36. [36]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8.  doi: 10.1107/S2053229614024218

    37. [37]

      Spek, A. L. Platon squeeze: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. C 2015, 71, 9–18.  doi: 10.1107/S2053229614024929

    38. [38]

      Zhang, W.; Xu, J.; Sun, Z. Special functions and synthesisof aromatic fluorine-containing compounds. Fine and Specialty Chemicals 2005, 13, 1–4.

    39. [39]

      Seidel, C.; Ahlers, R.; Ruschewitz, U. Coordination polymers with tetrafluoroterephthalate as bridging ligand. Cryst. Growth Des. 2014, 14, 3576–3586.  doi: 10.1021/cg500498k

    40. [40]

      Wu, J. Recent Applications of Fourier Transform Infrared Spectrometry. 1st ed. : scientfic and Technical Documents Publishing House 1994.

    41. [41]

      Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied topological analysis of crystal structures with the program package Topospro. Cryst. Growth Des. 2014, 14, 3576–3586.  doi: 10.1021/cg500498k

    42. [42]

      Hulvey, Z.; Furman, J. D.; Turner, S. A.; Tang, M.; Cheetham, A. K. Dimensionality trends in metal-organic frameworks containing perfluorinated or nonfluorinated benzenedicarboxylates. Cryst. Growth Des. 2010, 10, 2041–2043.  doi: 10.1021/cg100121n

    43. [43]

      Smets, D.; Ruschewitz, U. How does the fluorination of the linker affect the structural chemistry of trimesate-based metal-organic frameworks (MOFs)? Z. Anorg. Allg. Chem. 2020, 646, 1157–1167.  doi: 10.1002/zaac.202000137

    44. [44]

      Sale, M.; Avdeev, M. 3DBVSMAPPER: a program for automatically generating bond-valence sum landscapes. J. Appl. Crystallogr. 2012, 45, 1054–1056.  doi: 10.1107/S0021889812032906

    45. [45]

      Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13.  doi: 10.1107/S0021889802022112

    46. [46]

      Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092.  doi: 10.1063/1.1699114

    47. [47]

      Forrest, K. A.; Pham, T.; Georgiev, P. A.; Pinzan, F.; Cioce, C. R.; Unruh, T.; Eckert, J.; Space, B. Investigating H2 sorption in a fluorinated metal-organic framework with small pores through molecular simulation and inelastic neutron scattering. Langmuir. 2015, 31, 7328–7336.  doi: 10.1021/acs.langmuir.5b01664

  • 加载中
    1. [1]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    2. [2]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    3. [3]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    4. [4]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    5. [5]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    6. [6]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    7. [7]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    8. [8]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    9. [9]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    10. [10]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    14. [14]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    15. [15]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    16. [16]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    17. [17]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    18. [18]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    19. [19]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    20. [20]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

Metrics
  • PDF Downloads(1)
  • Abstract views(513)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return