Citation: Tao-Xiong XIE, Peng-Wen REN, Lin-Yu YU, Wei LI, Hao-Jie DENG, Jian-Bing JIANG. Optimization of Al3+ Doping on the Microstructure and Electrochemical Performance of Spinel LiMn2O4[J]. Chinese Journal of Structural Chemistry, ;2022, 41(2): 220216. doi: 10.14102/j.cnki.0254-5861.2011-3260 shu

Optimization of Al3+ Doping on the Microstructure and Electrochemical Performance of Spinel LiMn2O4

  • Corresponding author: Jian-Bing JIANG, jjbcsu2011@163.com
  • Received Date: 20 May 2021
    Accepted Date: 30 August 2021

    Fund Project: the National Natural Science Foundation of China 51604106Foundation of Hunan Province Department of Education 18C0492Natural Science Foundation of Hunan Province 2019JJ40070the China Postdoctoral Science Foundation 2016M602428

Figures(9)

  • A series of spinel LiAlxMn2-xO4 (x ≤ 0.1) cathode materials was synthesized by controlled crystallization and solid state route with micro-spherical Mn3O4 as the precursor. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to analyze the crystal structure of the synthetic material and the microscopic morphology of the particles. It was found that Al3+ doping did not change the spinel structure of the synthesized materials, and the particles had better crystallinity. In the charge and discharge test of the synthesized materials, we found that Al3+ doping would slightly reduce the discharge capacity, but it could effectively improve the cyclic stability of the material. The initial capacity of LiAl0.04Mn1.96O4 is 121.6 mAh/g. After 100 cycles at a rate of 1 C (1 C = 148 mA/g), the capacity can still reach 112.9 mAh/g, and the capacity retention rate is 96.4%. Electrochemical impedance spectroscopy (EIS) suggests that Al3+ doping can effectively enhance the diffusion capacity of lithium ions in the material.
  • 加载中
    1. [1]

      Lu, W.; Liang, L.; Sun, X.; Sun, X.; Wu, C.; Hou, L.; Sun, J.; Yuan, C. Recent progresses and development of advanced atomic layer deposition towards high-performance Li-ion batteries. Nanomaterials 2017, 7, 325−28.  doi: 10.3390/nano7100325

    2. [2]

      Li, Y.; Qi, Z.; Liu, B.; Mclellan, B.; Tang, Y. Substitution effect of new-energy vehicle credit program and corporate average fuel consumption regulation for green-car subsidy. Energy 2018, 152, 223−236.  doi: 10.1016/j.energy.2018.03.134

    3. [3]

      Jiang, J. B.; Du, K.; Cao, Y. B.; Peng, Z. D.; Hu, G. R.; Duan, J. G. Synthesis of micro-spherical Mn3O4 by controlled crystallization method. Powder Technol. 2013, 246, 723−727.  doi: 10.1016/j.powtec.2013.04.053

    4. [4]

      Tarascon, J. M.; Guyomard, D. The Li1+xMn2O4/C rocking-chair system: a review. Electrochim. Acta 1993, 38, 1221−1231.  doi: 10.1016/0013-4686(93)80053-3

    5. [5]

      Zhou, W. J.; Bao, S. J.; He, B. L.; Liang, Y. Y.; Li, H. L. Synthesis and electrochemical properties of LiAl0.05Mn1.95O4 by the ultrasonic assisted rheological phase method. Electrochim. Acta 2006, 51, 4701−4708.  doi: 10.1016/j.electacta.2006.01.011

    6. [6]

      Han, C. G.; Zhu, C. Y.; Saito, G.; Akiyama, T. Improved electrochemical performance of LiMn2O4 surface-modified by a Mn4+-rich phase for rechargeable lithium-ion batteries. Electrochim. Acta 2016, 209, 225−234.  doi: 10.1016/j.electacta.2016.05.075

    7. [7]

      Lin, B. H.; Yin, Q.; Hu, H. R.; Lu, F. J.; Xia, H. LiMn2O4 nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries. J. Solid State Chem. 2014, 209, 23−28.  doi: 10.1016/j.jssc.2013.10.016

    8. [8]

      Fergus, J. W. Recent developments in cathode materials for lithium ion batteries. J. Power Sources 2010, 195, 939−954.  doi: 10.1016/j.jpowsour.2009.08.089

    9. [9]

      Tron, A.; Park, Y. D.; Mun, J. Y. AlF3-coated LiMn2O4 as cathode material for aqueous rechargeable lithium battery with improved cycling stability. J. Power Sources 2016, 325, 360−364.  doi: 10.1016/j.jpowsour.2016.06.049

    10. [10]

      Xiao, H.; Wang, Y.; Kai, X.; Cheng, S.; Cheng, X. High capacitance LiMn2O4 microspheres with different microstructure as cathode material for aqueous asymmetric supercapacitors. J. Alloys Compd. 2017, 738, 25−31.

    11. [11]

      Guo, H. J.; Li, X. Q.; He, F. Y.; Li, X. H.; Wang, Z. X.; Peng, W. J. Effects of sodium substitution on properties of LiMn2O4 cathode for lithium ion batteries. T. Nonferr. Metal. Soc. 2010, 20, 1043−1048.  doi: 10.1016/S1003-6326(09)60255-7

    12. [12]

      Kim, H. S.; Na, H. G.; Yang, J. C.; Jung, J. H.; Koo, Y. S.; Hur, N. J.; Kim, H. W. Annealing effects on the structure, photoluminescence, and magnetic properties of GaN/Mn3O4 core-shell nanowires. J. Solid State Chem. 2010, 183, 2445−2450.  doi: 10.1016/j.jssc.2010.08.006

    13. [13]

      Park, J. P.; Kim, S. K.; Park, J. Y.; Hwang, C. H.; Choi, M.; Kim, J. E.; Ok, K. M.; Kwak, H. Y.; Shim, I. W. Syntheses of Mn3O4 and LiMn2O4 nanoparticles by a simple sonochemical method. Mater. Lett. 2009, 63, 2201−2204.  doi: 10.1016/j.matlet.2009.07.027

    14. [14]

      Gibot, P.; Laffont, L. Hydrophilic and hydrophobic nano-sized Mn3O4 particles. J. Solid State Chem. 2007, 180, 695−701.  doi: 10.1016/j.jssc.2006.11.024

    15. [15]

      Fang, D. L.; Li, J. C.; Liu, X.; Huang, P. F.; Xu, T. R.; Qian, M. C.; Zheng, C. H. Synthesis of a Co–Ni doped LiMn2O4 spinel cathode material for high-power Li-ion batteries by a Sol-gel mediated solid-state route. J. Alloys Compd. 2015, 640, 82−89.  doi: 10.1016/j.jallcom.2015.03.243

    16. [16]

      Kawai, H.; Nagata, M.; Tukamoto, H.; West, A. R. High-voltage lithium cathode materials. J. Power Sources 1999, 81, 67−72.

    17. [17]

      Zhang, H.; Liu, D.; Zhang, X. S.; Zhao, C. J.; Xu, Y. L. Microwave synthesis of LiMg0.05Mn1.95O4 and electrochemical performance at elevated temperature for lithium-ion batteries. J. Solid State Chem. 2013, 18, 569−575.

    18. [18]

      Sulochana, A.; Thirunakaran, R.; Sivashanmugam, A.; Gopukumar, S.; Yamaki, J. I. Sol-gel synthesis of 5V LiCuxMn2-xO4 as a cathode material for lithium rechargeable batteries. J. Electrochem. Soc. 2008, 155, A206−A210.  doi: 10.1149/1.2828030

    19. [19]

      Li, Z.; Lv, X.; Wen, Y.; Fan, W.; Su, H. Carbon combustion synthesis of LiNi0.5Mn1.5O4 and its use as a cathode material for lithium ion batteries. J. Alloys Compd. 2010, 48, 802−805.

    20. [20]

      Liu, G. Q.; Wen, L.; Liu, G. Y.; Tian, Y. W. Rate capability of spinel LiCr0.1Ni0.4Mn1.5O4. J. Alloys Compd. 2010, 501, 233−235.  doi: 10.1016/j.jallcom.2010.04.076

    21. [21]

      Chen, M. M.; Wu, R. Y.; Ju, S. G.; Zhang, X. X.; Xue, F.; Xing, W. H. Improved performance of Al-doped LiMn2O4 ion-sieves for Li+ adsorption. Micropor. Mesopor. Mater. 2018, 261, 29−34.  doi: 10.1016/j.micromeso.2017.10.058

    22. [22]

      Zhan, D.; Liang, Y.; Cui, P.; Xiao, Z. Al-doped LiMn2O4 single crystalline nanorods with enhanced elevated-temperature electrochemical performance via a template-engaged method as a cathode material for lithiumion batteries. RSC Adv. 2014, 5, 6372−6377.

    23. [23]

      Wang, Y. L.; Wang, W. G; Zhang, Q.; Xin, W.; Cao, J. S.; Shi-Hai, Y. E. Electrochemical performance of Al-doped spinel LiMn2O4 cathode material for Li-ion batteries. J. Electrochem. 2013, 19, 232−236.

    24. [24]

      Cai, Z.; Ma, Y.; Huang, X.; Yan, X.; Yu, Z.; Zhang, S.; Song, G.; Xu, Y.; Wen, C.; Yang, W. High electrochemical stability Al-doped spinel LiMn2O4 cathode material for Li-ion batteries. J. Energy Storage 2020, 27, 101036.1−101036.8.

    25. [25]

      Martha, S. K.; Markevich, E.; Burgel, V.; Salitra, G.; Zinigrad, E.; Markovsky, B.; Sclar, H.; Pramovich, Z.; Heik, O.; Aurbach, D.; Exnar, I.; Buqa, H.; Drezen, T.; Semrau, G.; Schmidt, M.; Kovacheva, D.; Saliyski. N. A short review on surface chemical aspects of Li batteries: a key for a good performance. J. Power Sources 2009, 189, 288−296.  doi: 10.1016/j.jpowsour.2008.09.084

    26. [26]

      Han, D. W.; Ryu, W. H.; Kim, W. K.; Eom, J. Y.; Kwon, H. S. Effects of Li and Cl codoping on the electrochemical performance and structural stability of LiMn2O4 cathode materials for hybrid electric vehicle applications. J. Phys. Chem. A 2013, 117, 4913−4919.

    27. [27]

      Iturrondobeitia, A.; Goni, A.; Palomares, V.; Muro, I. G.; Lezama, L.; Rojo, T. Effect of doping LiMn2O4 spinel with a tetravalent species such as Si(IV) versus with a trivalent species such as Ga(III). Electrochemical, magnetic and ESR study. J. Power Sources 2012, 216, 482−488.  doi: 10.1016/j.jpowsour.2012.06.031

    28. [28]

      Wang, Y. Z.; Xuan, S.; Xu, H. Y.; Ming, X.; Deng, S. X.; Wang, H.; Liu, J. B.; Yan, H. Facile synthesis of porous LiMn2O4 spheres as cathode materials for high-power lithium ion batteries. J. Power Sources 2013, 226, 140−148.  doi: 10.1016/j.jpowsour.2012.10.077

  • 加载中
    1. [1]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    2. [2]

      Lingjiang KouYong WangJiajia SongTaotao AiWenhu LiMohammad Yeganeh GhotbiPanya WattanapaphawongKoji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368

    3. [3]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    4. [4]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    5. [5]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    6. [6]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    7. [7]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    8. [8]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    9. [9]

      Runjing XuXin GaoYa ChenXiaodong ChenLifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852

    10. [10]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    11. [11]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    12. [12]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    13. [13]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    14. [14]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    15. [15]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    16. [16]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    17. [17]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    18. [18]

      Na LiWenxue WangPeng WangZhanying SunXinlong TianXiaodong Shi . Dual-defect engineering of catalytic cathode materials for advanced lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110731-. doi: 10.1016/j.cclet.2024.110731

    19. [19]

      Fan WuShaoyang WuXin YeYurong RenPeng Wei . Research progress of high-entropy cathode materials for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(4): 109851-. doi: 10.1016/j.cclet.2024.109851

    20. [20]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

Metrics
  • PDF Downloads(2)
  • Abstract views(305)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return