-
[1]
Zheng, X. D.; Lu, T. B. Constructions of helical coordination compounds. CrystEngComm. 2010, 12, 324−336.
doi: 10.1039/B911991D
-
[2]
Fan, W. D.; Yuan, S.; Wang, W. J.; Feng, L.; Liu, X. P.; Zhang, X. R.; Wang, X.; Kang, Z. X.; Dai, F. N.; Yuan, D. Q.; Sun, D. F.; Zhou, H. C. Optimizing multivariate metal-organic frameworks for efficient C2H2/CO2 separation. J. Am. Chem. Soc. 2020, 142, 8728–8737.
doi: 10.1021/jacs.0c00805
-
[3]
Wang, H.; Li, J. Microporous metal-organic frameworks for adsorptive separation of C5–C6 alkane isomers. Acc. Chem. Res. 2019, 52, 1968–1978.
doi: 10.1021/acs.accounts.8b00658
-
[4]
Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.
doi: 10.1021/acs.accounts.8b00521
-
[5]
Gu, J. Z.; Wen, M.; Cai, Y.; Shi, Z. F.; Arol, A. S.; Kirillova, M. V.; Kirillov, A. M. Metal-organic architectures assembled from multifunctional polycarboxylates: hydrothermal self-assembly, structures, and catalytic activity in alkane oxidation. Inorg. Chem. 2019, 58, 2403−2412.
doi: 10.1021/acs.inorgchem.8b02926
-
[6]
Gu, J. Z.; Wen, M.; Cai, Y.; Shi, Z. F.; Nesterov, D. S.; Kirillova, M. V.; Kirillov, A. M. Cobalt(II) coordination polymers assembled from unexplored pyridine-carboxylic acids: structural diversity and catalytic oxidation of alcohols. Inorg. Chem. 2019, 58, 5875−5885.
doi: 10.1021/acs.inorgchem.9b00242
-
[7]
Roy, M.; Adhikary, A.; Mondal, A. K.; Mondal, R. Multifunctional properties a 1D helical Co(II) coordination polymers: toward single-ion magnetic behavior and efficient dye degradation. ACS Omega 2018, 3, 15315−15324.
doi: 10.1021/acsomega.8b02212
-
[8]
Salitros, I.; Herchel, R.; Fuhr, O.; Gonzalez-Prieto, R.; Ruben, M. Polynuclear iron(II) complexes with 2, 6-bis(pyrazol-1-yl)-pyridineanthracence ligands exhibiting highly distorted high-spin centers. Inorg. Chem. 2019, 58, 4310−4319.
doi: 10.1021/acs.inorgchem.8b03432
-
[9]
Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.
doi: 10.1039/C6CS00930A
-
[10]
Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162.
doi: 10.1021/cr200101d
-
[11]
Haddad, S.; Lázaro, I. A.; Fantham, M.; Mishra, A.; Silvestre-Albero, J.; Osterrieth, J. W. M.; Schierle, G. S. K.; Kaminski, C. F.; Forgan, R. S.; Fairen-Jimenez, D. Design of a functionalized metal-organic framework system of enhanced targeted delivery to mitochondria. J. Am. Chem. Soc. 2020, 142, 6661–6674.
doi: 10.1021/jacs.0c00188
-
[12]
Zhao, S. Q.; Gu, J. Z. Syntheses, structures and catalytic properties of two Mn(II) and Cd(II) coordination polymers through in situ ligand reaction. Chin. J. Struct. Chem. 2021, 40, 785–796.
-
[13]
Zhou, W.; Huang, D. D.; Wu, Y. P.; Zhao, J.; Wu, T.; Zhang, J.; Li, D. S.; Sun, C. H.; Feng, P. Y.; Bu, X. H. Stable hierarchical bimetal-organic nanostructures as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2019, 58, 4227–4231.
doi: 10.1002/anie.201813634
-
[14]
Huang, D. D.; Wu, X. Q.; Tian, J. W.; Wang, X. K.; Zhou, Z. H.; Li, D. S. Assembling of a novel 3D Ag(I)-MOFs with mixed ligands tactics: syntheses, crystal structure and catalytic degradation of nitrophenol. Chin. Chem. Lett. 2018, 29, 845–848.
doi: 10.1016/j.cclet.2017.09.043
-
[15]
Liu, S.; Wang, X.; Yu, H. G.; Wu, Y. P.; Li, B.; Lan, Y. Q.; Wu, T.; Zhang, J.; Li, D. S. Two new pseudo-isomeric nickel(II) metal-organic frameworks with efficient electrocatalytic activity toward methanol oxidation. Rare Met. 2021, 40, 489–498.
doi: 10.1007/s12598-020-01596-x
-
[16]
Gu, J. Z.; Wen, M.; Liang, X. X.; Shi, Z. F.; Kirillova, M. V.; Kirillov, A. M. Multifunctional aromatic carboxylic acids as versatile building blocks for hydrothermal design of coordination polymers. Crystals 2018, 8, 83.
doi: 10.3390/cryst8020083
-
[17]
Zhao, S. Q.; Gu, J. Z. Synthesis, structure and catalytic properties of Mn(II) coordination polymer through in situ ligand reaction. Chin. J. Inorg. Chem. 2021, 37, 751–757.
-
[18]
Li, Y.; Wu, J.; Gu, J. Z.; Qiu, W. D.; Feng, A. S. Temperature-dependent syntheses of two manganese(II) coordination compounds based on an ether-bridged tetracarboxylic acid. Chin. J. Struct. Chem. 2020, 39, 727–736.
-
[19]
Agarwal. R. A.; Gupta, A. K.; De, D. Flexible Zn-MOF exhibiting selective CO2 adsorption and efficient Lewis acidic catalytic activity. Cryst. Grwoth Des. 2019, 19, 2010−2018.
doi: 10.1021/acs.cgd.8b01462
-
[20]
Gu, J. Z.; Wan, S. M.; Dou, W.; Kirillova, M. V.; Kirillov, A. M. Coordination polymers from unexplored biphenyl-tricarboxylate linker: hydrothermal synthesis, structural traits and catalytic cyanosilylation. Inorg. Chem. Front. 2021, 8, 1229–1242.
doi: 10.1039/D0QI01230K
-
[21]
Gu, J. Z.; Wan, S. M.; Kirillova, M. V.; Kirillov, A. M. H-bonded and metal(II)-organic architectures assembled from an unexplored aromatic tricarboxylic acid: structural variety and functional properties. Dalton Trans. 2020, 49, 7197–7209.
doi: 10.1039/D0DT01261K
-
[22]
Maserati, L.; Meckler, S. M.; Li, C. Y.; Helms, B. A. Minute-MOFs: ultrafast synthesis of M2(dobpdc) metal-organic frameworks from divalent metal oxide colloidal nanocrystals. Chem. Mater. 2016, 28, 1581–1588.
doi: 10.1021/acs.chemmater.6b00494
-
[23]
Zheng, J.; Barpaga, D.; Trump, B. A.; Shetty, M.; Fan, Y. Z.; Bhattacharya, P.; Jenks, J. J.; Su, C. Y.; Brown, C. M.; Maurin, G.; McGrail, B. P.; Motkuri, R. K. Molecular insight into fluorocarbon adsorption in pore expanded metal-organic framework analogs. J. Am. Chem. Soc. 2020, 142, 3002–3012.
doi: 10.1021/jacs.9b11963
-
[24]
Siegelman, R. L.; Milner, P. J.; Forse, A. C.; Lee, J. H.; Colwell, K. A.; Neaton, J. B.; Reimer, J. A.; Weston, S. C.; Long, J. R. Water enables efficient CO2 capture from natural gas flue emissions in an oxidation-resistant diamine-appended metal-organic framework. J. Am. Chem. Soc. 2019, 141, 13171–13186.
doi: 10.1021/jacs.9b05567
-
[25]
Sheldrick, G. M. SHELXS 97, Program for Solution of Crystal Structure. University of Göttingen, Germany 1997.
-
[26]
Sheldrick, G. M. SHELXL 97, Program for Refinement of Crystal Structure. University of Göttingen, Germany 1997.
-
[27]
Gu, J. Z.; Cai, Y.; Wen, M.; Shi, Z. F.; Kirillov, A. M. A new series of Cd(II) metal-organic architectures driven by soft ether-bridged tricarboxylate spacers: synthesis, structural and topological versatility, and photocatalytic properties. Dalton. Trans. 2018, 47, 14327−14339.
doi: 10.1039/C8DT02467G
-
[28]
Gu, J. Z.; Liang, X. X.; Cui, Y. H.; Wu, J.; Shi, Z. F.; Kirillov, A. M. Introducing 2-(2-carboxyphenoxy)terephthalic acid as a new versatile building block for design of diverse coordination polymers: synthesis, structural features, luminescence sensing, and magnetism. CrystEngComm. 2017, 19, 2570–2588.
doi: 10.1039/C7CE00219J
-
[29]
Gu, J. Z.; Lv, D. Y.; Gao, Z. Q.; Liu, J. Z.; Dou, W.; Tang, Y. Synthesis, structures, luminescent and magnetic properties of four coordination polymers with the flexible 1, 3-phenylenediacetate ligands. J. Solid State Chem. 2011, 184, 675–683.
doi: 10.1016/j.jssc.2011.01.030
-
[30]
Loukopoulos, E.; Kostakis, G. E. Review: recent advances of one-dimensional coordination polymers as catalysts. J. Coord. Chem. 2018, 71, 371–410.
doi: 10.1080/00958972.2018.1439163
-
[31]
Hu, L.; Hao, G. X.; Luo, H. D.; Ke, C. X.; Shi, G.; Lin, J.; Lin, X. M.; Qazi, U. Y.; Cai, Y. P. Bifunction 2D Cd(II)-based metal-organic framework as efficient heterogeneous catalyst for the formation of C–C bond. Cryst. Growth Des. 2018, 18, 2883–2889.
doi: 10.1021/acs.cgd.7b01728
-
[32]
Zhang, Y. W.; Su, K. Z.; Hao, M.; Liu, L.; Han, Z. B.; Yuan, D. Q. Two metal-organic frameworks based on pyridyl-tricarboxylate ligands as size-selective catalysts for solvent-free cyanosilylation reaction. CrystEngComm. 2018, 20, 6070–6076.
doi: 10.1039/C8CE00694F