Citation: Hai-Su WU, Ti-Fang MIAO, Hai-Xia SHI, Yun XU, Xian-Liang FU, Li QIAN. Probing Photocatalytic Hydrogen Evolution of Cobalt Complexes: Experimental and Theoretical Methods[J]. Chinese Journal of Structural Chemistry, ;2021, 40(12): 1696-1709. doi: 10.14102/j.cnki.0254-5861.2011-3239 shu

Probing Photocatalytic Hydrogen Evolution of Cobalt Complexes: Experimental and Theoretical Methods

  • Corresponding author: Ti-Fang MIAO, miaotifang@163.com Yun XU, xuyun88@163.com
  • Received Date: 28 April 2021
    Accepted Date: 13 July 2021

    Fund Project: the Natural Science Foundation of Anhui Province for Distinguished Young Scholars 1808085J24the Natural Science Foundation of Anhui Province 1808085MB45the Natural Science Foundation of Educational Committee of Anhui Province KJ2020A0022the Excellent Youth Talent Support Program of Anhui Province gxyq2020101

Figures(12)

  • This work reports on the synthesis and characterization of a series of Schiff-base cobalt(Ⅲ) complexes 1~4 that exhibit an obvious catalytic activity for hydrogen production in aqueous solution using fluorescein (FL) and triethanolamine (TEOA) as photosensitizer and electron donor, respectively. The complexes display the capability of splitting of water for H2 evolution. Under optimized conditions, complex 3 shows better properties for photocatalysis, 25 mg of which can release 152.3 μmol of H2 after irradiation for 3 h. The mechanism for light-driven H2 production was explored by experiments and density functional theory (DFT). Meanwhile, the reason of releasing hydrogen was explained theoretically in detail. The research results will help to understand the interaction of cobalt complexes with the photosensitizer and design new photocatalysis for the future.
  • 加载中
    1. [1]

      Kim, D.; Sakimoto, K. K.; Hong, D.; Yang, P. Artificial photosynthesis for sustainable fuel and chemical production. Angew. Chem. Int. Ed. 2015, 54, 3259−3266.  doi: 10.1002/anie.201409116

    2. [2]

      Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511−518.  doi: 10.1038/nphoton.2012.175

    3. [3]

      Artero, V.; Chavarot-Kerlidou, M.; Fontecave, M. Splitting water with cobalt. Angew. Chem. Int. Ed. 2011, 50, 7238−7266.  doi: 10.1002/anie.201007987

    4. [4]

      Fukuzumi, S.; Lee, Y. M.; Nam, W. Thermal and photocatalytic production of hydrogen with earth-abundant metal complexes. Coord. Chem. Rev. 2018, 355, 54−73.  doi: 10.1016/j.ccr.2017.07.014

    5. [5]

      Gao, C.; Wang, J.; Xu, H.; Xiong, Y. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 2017, 46, 2799−2823.  doi: 10.1039/C6CS00727A

    6. [6]

      Du, P.; Eisenberg, R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energ. Environ. Sci. 2012, 5, 6012−6021.  doi: 10.1039/c2ee03250c

    7. [7]

      Eckenhoff, W. T. Molecular catalysts of Co, Ni, Fe, and Mo for hydrogen generation in artificial photosynthetic systems. Coord. Chem. Rev. 2018, 373, 295−316.  doi: 10.1016/j.ccr.2017.11.002

    8. [8]

      Eckenhoff, W. T.; McNamara, W. R.; Du, P.; Eisenberg, R. Cobalt complexes as artificial hydrogenases for the reductive side of water splitting. Biochim. Biophys. Acta 2013, 1827, 958−973.  doi: 10.1016/j.bbabio.2013.05.003

    9. [9]

      Huo, J.; Zhang, Y. B.; Zou, W. Y.; Hu, X.; Deng, Q.; Chen, D. Mini-review on an engineering approach towards the selection of transition metal complex-based catalysts for photocatalytic H2 production. Catal. Sci. Technol. 2019, 9, 2716−2727.  doi: 10.1039/C8CY02581A

    10. [10]

      Dong, X. Y.; Zhang, M.; Pei, R. B.; Wang, Q.; Wei, D. H.; Zang, S. Q.; Fan, Y. T.; Mak, T. C. A crystalline copper(II) coordination polymer for the efficient visible-light-driven generation of hydrogen. Angew. Chem. Int. Ed. 2016, 55, 2113−2117.  doi: 10.1002/anie.201510380

    11. [11]

      Zhong, M.; Li, H.; Chen, J.; Tao, L.; Li, C.; Yang, Q. Cooperative activation of cobalt-salen complexes for epoxide hydration promoted on flexible porous organic frameworks. Chem. Eur. J. 2017, 23, 11504−11508.  doi: 10.1002/chem.201702810

    12. [12]

      Song, T.; Zhang, L.; Zhang, P.; Zeng, J.; Wang, T.; Ali, A.; Zeng, H. Stable and improved visible-light photocatalytic hydrogen evolution using copper(II)-organic frameworks: engineering the crystal structures. J. Mater. Chem. A 2017, 5, 6013−6018.  doi: 10.1039/C7TA00095B

    13. [13]

      Pullen, S.; Fei, H.; Orthaber, A.; Cohen, S. M.; Ott, S. Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a metal-organic framework. J. Am. Chem. Soc. 2013, 135, 16997−17003.  doi: 10.1021/ja407176p

    14. [14]

      Hooe, S. L.; Rheingold, A. L.; Machan, C. W. Electrocatalytic reduction of dioxygen to hydrogen peroxide by a molecular manganese complex with a bipyridine-containing Schiff base ligand. J. Am. Chem. Soc. 2018, 140, 3232−3241.  doi: 10.1021/jacs.7b09027

    15. [15]

      Han, Z.; McNamara, W. R.; Eum, M. S.; Holland, P. L.; Eisenberg, R. A nickel thiolate catalyst for the long-lived photocatalytic production of hydrogen in a noble-metal-free system. Angew. Chem. Int. Ed. 2012, 51, 1667−1770.  doi: 10.1002/anie.201107329

    16. [16]

      Zhang, D. Modification of the optical and electronic properties of TiO2 by n anion-doping for augmentation of the visible light assisted photocatalytic performance. Chin. J. Struct. Chem. 2018, 59, 1353–1361.  doi: 10.1134/S0022476618060148

    17. [17]

      Li, C. B.; Gong, P.; Yang, Y.; Wang, H. Y. Cobalt(II)-salen complexes for photocatalytic hydrogen production in noble metal-free molecular systems. Catal. Lett. 2018, 148, 3158−3164.  doi: 10.1007/s10562-018-2509-y

    18. [18]

      Hogue, D. R. W.; Schott, O.; Hanan, G. S.; Brooker, S. A smorgasbord of 17 cobalt complexes active for photocatalytic hydrogen evolution. Chem. Eur. J. 2018, 24, 9820−9832.  doi: 10.1002/chem.201800396

    19. [19]

      Asraf, M. A.; Younus, H. A.; Ezugwu, C. I.; Mehta, A.; Verpoort, F. Cobalt salophen complexes for light-driven water oxidation. Catal. Sci. Technol. 2016, 6, 4271−4282.  doi: 10.1039/C5CY02157J

    20. [20]

      Huang, Y.; Zhang, B. Active cocatalysts for photocatalytic hydrogen evolution derived from nickel or cobalt amine complexes. Angew. Chem. Int. Ed. 2017, 56, 14804−14806.  doi: 10.1002/anie.201708844

    21. [21]

      Ishizuka, T.; Watanabe, A.; Kotani, H.; Hong, D.; Satonaka, K.; Wada, T.; Shiota, Y.; Yoshizawa, K.; Ohara, K.; Yamaguchi, K.; Kato, S.; Fukuzumi, S.; Kojima, T. Homogeneous photocatalytic water oxidation with a dinuclear Co(III)-pyridylmethylamine complex. Inorg. Chem. 2016, 55, 1154−1164.  doi: 10.1021/acs.inorgchem.5b02336

    22. [22]

      Banerjee, A.; Frontera, A.; Chattopadhyay, S. Methylene spacer regulated variation in molecular and crystalline architectures of cobalt(Ⅲ) complexes with reduced Schiff base ligands: a combined experimental and theoretical study. Dalton Trans. 2019, 48, 11433−11447.  doi: 10.1039/C9DT01818B

    23. [23]

      Zhao, X.; Wang, P.; Liang, G.; Smith, N.; Hill, K.; Donnadieu, B.; Webster, C. E. Enhanced catalytic hydrogen evolution in neutral water by a cobalt complex with softer polypyridyl ligand. Angew. Chem. Int. Ed. 2020, 59, 12694−12697.  doi: 10.1002/anie.202002640

    24. [24]

      Sasaki, Y.; Kato, H.; Kudo, A. [Co(bpy)3] (3+/2+) and [Co(phen)3] (3+/2+) electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J. Am. Chem. Soc. 2013, 135, 5441−5449.  doi: 10.1021/ja400238r

    25. [25]

      Khandelwal, S.; Zamader, A.; Nagayach, V.; Dolui, D.; Mir, A. Q.; Dutta, A. Inclusion of peripheral basic groups activates dormant cobalt-based molecular complexes for catalytic H2 evolution in water. ACS Catal. 2019, 9, 2334−2344.  doi: 10.1021/acscatal.8b04640

    26. [26]

      Elgrishi, N.; Kurtz, D. A.; Dempsey, J. L. Reaction parameters influencing cobalt hydride formation kinetics: implications for benchmarking H2-evolution catalysts. J. Am. Chem. Soc. 2017, 139, 239−244.  doi: 10.1021/jacs.6b10148

    27. [27]

      Cheng, D.; Negreiros, F. R.; Apra, E.; Fortunelli, A. Computational approaches to the chemical conversion of carbon dioxide. ChemSusChem. 2013, 6, 944−965.  doi: 10.1002/cssc.201200872

    28. [28]

      Zhang, L.; Lin, C. Y.; Zhang, D.; Gong, L.; Zhu, Y.; Zhao, Z.; Xu, Q.; Li, H.; Xia, Z. Guiding principles for designing highly efficient metal-free carbon catalysts. Adv. Mater. 2019, 31, e1805252.  doi: 10.1002/adma.201805252

    29. [29]

      Rhodes, B.; Rowling, S.; Tidswell, P.; Woodward, S.; Brown, S. M. Aerobic epoxidation via alkyl-2-oxocyclopentanecarboxylate co-oxidation with cobalt or manganese Jacobsen-type catalysts. J. Mol. Catal. A: Chem. 1997, 116, 375−384.  doi: 10.1016/S1381-1169(96)00360-3

    30. [30]

      Felicio, R. C.; Cavalheiro, E. T. G.; Dockal, E. R. Preparation, characterization and thermogravimetric studies of [N, N΄-cis-1, 2-cyclohexylene bis(salicylideneaminato)] cobalt(II) and [N, N′-(±)-trans-1, 2-cyclo-hexylene bis(salicylideneaminato)] cobalt(II). Polyhedron 2001, 20, 261−268.  doi: 10.1016/S0277-5387(00)00620-3

    31. [31]

      Abdulghani, A. J.; Khaleel, A. M. Preparation and characterization of di-, tri-, and tetranuclear Schiff base complexes derived from diamines and 3, 4-dihydroxybenzaldehyde. Bioinorg. Chem. Appl. 2013, 2013, 277−306.

    32. [32]

      Liu, W. Q.; Zhou, S. L.; Fan, M. Z. Synthesis and crystal structure of a dinuclear Cu(Ⅱ) complex based on a carboxyl-substituted 1H-1, 2, 3-triazole and its DNA cleavage activity. Chin. J. Struct. Chem. 2015, 34, 917–924.

    33. [33]

      Li, H.; Xi, D.; Niu, Y.; Wang, C.; Xu, F.; Liang, L.; Xu. P. Design, synthesis and biological evaluation of cobalt(II)-Schiff base complexes as ATP-noncompetitive MEK1 inhibitors. J. Inorg. Biochem. 2019, 195, 174−181.  doi: 10.1016/j.jinorgbio.2019.03.022

    34. [34]

      Dong, J.; Wang, M.; Zhang, P.; Yang, S.; Liu, J.; Li, X.; Sun, L. Promoting effect of electrostatic interaction between a cobalt catalyst and a xanthene dye on visible-light-driven electron transfer and hydrogen production. J. Phys. Chem. C 2011, 115, 15089−15096.  doi: 10.1021/jp2040778

    35. [35]

      Dzygiel, P.; Reeve, T. B.; Piarulli, U.; Krupicka, M.; Tvaroska, I.; Gennari, C. Resolution of racemic N-benzyl-amino acids by liquid-liquid extraction: a practical method using a lipophilic chiral cobalt(III) salen complex and mechanistic studies. Eur. J. Org. Chem. 2008, 7, 1253−1264.

    36. [36]

      Kennedy, B. J.; Fallon, G. D.; Gatehouse, B. M. K. C.; Murray, K. S. Spin-state differences and spin crossover in five-coordinate lewis base adducts of cobalt(I1) Schiff base complexes. Structure of the high-spin (N, N΄-o -phenylenebis(salicylaldiminato)) cobalt(II)-2-methylimidazole. Inorg. Chem. 1984, 23, 580−588.  doi: 10.1021/ic00173a019

    37. [37]

      Wöltinger, J.; Bäckvall, J. E.; Zsigmond, Â. Zeolite-encapsulated cobalt salophen complexes as efficient oxygen-activating catalysts in palladium-catalyzed aerobic 1, 4-oxidation of 1, 3-dienes. Chem. Eur. J. 1999, 5, 1460−1467.  doi: 10.1002/(SICI)1521-3765(19990503)5:5<1460::AID-CHEM1460>3.0.CO;2-I

    38. [38]

      Chen, H.; Sun, Z.; Ye, S.; Lu, D.; Du, P. Molecular cobalt-salen complexes as novel cocatalysts for highly efficient photo-catalytic hydrogen production over a CdS nanorod photosensitizer under visible light. J. Mater. Chem. A 2015, 3, 15729−15737.  doi: 10.1039/C5TA03515E

    39. [39]

      Jain, S.; Venkatasubbaiah, K.; Jones, C. W.; Davis, R. J. Factors influencing recyclability of Co(III)-salen catalysts in the hydrolytic kinetic resolution of epichlorohydrin. J. Mol. Catal. A Chem. 2010, 316, 8−15.  doi: 10.1016/j.molcata.2009.10.025

    40. [40]

      Fan, G. Z.; Zhao, H. T.; Duan, Z. X.; Fang, T.; Wan, M. H.; He, L. N. A novel method to synthesize diphenyl carbonate from carbon dioxide and phenol in the presence of methanol. Catal. Sci. Technol. 2011, 1, 1138−1141.  doi: 10.1039/c1cy00208b

    41. [41]

      Fast, A.; Esfandiari, N. M.; Blum, S. A. Small number of active sites and single-locus kinetics revealed in (salph) Co-catalyzed ethylene oxide polymerization. ACS Catal. 2013, 3, 2150−2153.  doi: 10.1021/cs400640g

    42. [42]

      Peretti, K. L.; Ajiro, H.; Cohen, C. T.; Lobkovsky, E. B.; Coates, G. W. A highly active, isospecific cobalt catalyst for propylene oxide polymerization. J. Am. Chem. Soc. 2005, 127, 11566−11567.  doi: 10.1021/ja053451y

    43. [43]

      Shyu, S. G.; Tseng, C. K.; Chang, C. K.; Chen, H. P.; Liu, H. C.; Twu, J. Effect of metal salen complex in the base catalyzed catalytic reaction between carbon dioxide and epoxides. J. Chin. Chem. Soc. 2012, 59, 443−451.  doi: 10.1002/jccs.201100670

    44. [44]

      Joseph, T.; Sawant, D. P.; Gopinath, C. S.; Halligudi, S. B. Zeolite encapsulated ruthenium and cobalt Schiff base complexes catalyzed allylic oxidation of α-pinene. J. Mol. Catal. A: Chem. 2002, 184, 289−299.  doi: 10.1016/S1381-1169(02)00010-9

    45. [45]

      Jain, S.; Venkatasubbaiah, K.; Jones, C. W.; Davis, R. J. Factors influencing recyclability of Co(III)-salen catalysts in the hydrolytic kinetic resolution of epichlorohydrin. J. Mol. Catal. A: Chem. 2010, 316, 8−15.  doi: 10.1016/j.molcata.2009.10.025

    46. [46]

      Chen, H.; Sun, Z.; Ye, S.; Lu, D.; Du, P. Molecular cobalt-salen complexes as novel cocatalysts for highly efficient photocatalytic hydrogen production over a CdS nanorod photosensitizer under visible light. J. Mat. Chem. A 2015, 3, 15729−15737.  doi: 10.1039/C5TA03515E

    47. [47]

      Kumar, D. N.; Garg, B. S. Some new cobalt(II) complexes: synthesis, characterization and thermal studies. J. Therm. Anal. Calorim. 2002, 69, 607−616.  doi: 10.1023/A:1019976226610

    48. [48]

      Sakamoto, R.; Masaaki, O.; Fukita, N.; Takahashi, K. Copper(II) compounds extended by 5-carboxysalicylaldehyde and its Schiff bases: interplay of two metal-binding sites and intermolecular stacking contributing to their network and bulk structures. Bull. Chem. Soc. Jpn. 1998, 71, 2365−4701.  doi: 10.1246/bcsj.71.2365

    49. [49]

      Percy, G. C.; Thornton, D. A. Infrared spectra of N-aryl salicylaldimine complexes substituted in both aryl rings. J. Inorg. Nucl. Chem. 1973, 35, 2319−2327.  doi: 10.1016/0022-1902(73)80296-9

    50. [50]

      Ueno, K.; Martell, A. E. Infrared studies on synthetic oxygen carriers. J. Phys. Chem. 1956, 60, 1270−1275.  doi: 10.1021/j150543a029

    51. [51]

      Felicio, R. C.; Cavalheiro, E. T. G.; Dockal, E. R. Preparation, characterization and thermogravimetric studies of [N, N΄-cis-1, 2-cyclohexylene bis(salicylideneaminato)]cobalt(II) and [N, N΄-(±)-trans-1, 2-cyclo-hexylene bis(salicylideneaminato)]cobalt(II). Polyhedron 2011, 20, 261−268.

    52. [52]

      Miao, T.; Liao, S.; Qian, L.; Zheng, K.; Ji, L. Electronic structures, DNA-binding and spectral properties of Co(III) complexes [Co(bpy)2(L)]3+ (L = pip, odhip, hnoip). Biophys. Chem. 2009, 140, 1−8.  doi: 10.1016/j.bpc.2008.11.007

    53. [53]

      Vincenzo, B.; Maurizio, C. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 1998, 102, 1995−2001.  doi: 10.1021/jp9716997

    54. [54]

      Maurizio, C.; Nadia, R.; Giovanni, S.; Vincenzo, B. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669−681.  doi: 10.1002/jcc.10189

    55. [55]

      Kuntz, I. D. Structure-based strategies for drug design and discovery. Science 1992, 257, 1078−1082.  doi: 10.1126/science.257.5073.1078

    56. [56]

      Brian, K. S.; Dale, L. B.; Irwin, D. K. Molecular docking using shape descriptors. J. Comp. Chem. 1992, 13, 380−397.  doi: 10.1002/jcc.540130311

    57. [57]

      Mats, H. M.; Ulf, R.; Geometry, reduction potential, and reorganization energy of the binuclear CuA site, studied by density functional theory. J. Am. Chem. Soc. 2001, 123, 7866−7876.  doi: 10.1021/ja010315u

    58. [58]

      Prabha, S.; Marcus, R. A. Electron-transfer reactions in proteins: electronic coupling in myoglobin. J. Chem. Phys. B 1993, 97, 6111−6114.  doi: 10.1021/j100125a004

    59. [59]

      Robert, J. C.; Marshall, D. N. Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements. Chem. Phys. Lett. 1996, 249, 15−19.  doi: 10.1016/0009-2614(95)01310-5

    60. [60]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 16, Revision C. 01, Gaussian, Inc. : Wallingford CT 2019.

    61. [61]

      Dong, J.; Wang, M.; Zhang, P.; Yang, S.; Liu, J.; Li, X.; Sun, L. Promoting effect of electrostatic interaction between a cobalt catalyst and a xanthene dye on visible-light-driven electron transfer and hydrogen production. J. Phys. Chem. C 2011, 115, 15089−15096.  doi: 10.1021/jp2040778

    62. [62]

      Chen, H.; Sun, Z.; Ye, S.; Lu, D.; Du, P. Molecular cobalt-salen complexes as novel cocatalysts for highly efficient photocatalytic gydrogen production over a CdS nanorod photosensitizer under visible light. J. Mater. Chem. A 2015, 3, 15729−15737.  doi: 10.1039/C5TA03515E

    63. [63]

      Fu, X.; Wang, J.; Huang, D.; Meng, S.; Zhang, Z.; Li, L.; Miao, T.; Chen, S. Trace amount of SnO2-decorated ZnSn(OH)6 as highly efficient photocatalyst for decomposition of gaseous benzene: synthesis, photocatalytic activity, and the unrevealed synergistic effect between ZnSn(OH)6 and SnO2. ACS Catal. 2015, 6, 957−968.

    64. [64]

      Lin, C.; Wang, H.; Liu, S.; Li, C.; Chu, B.; Yan, Q. Preparation of magnetic Co0.5Zn0.5Fe2O4/AgBr hybrids for the visible-light driven degradation of methyl orange. Mater. Sci. Semicond. Process 2017, 73, 67−71.

    65. [65]

      Wang, P.; Liang, G.; Reddy, M. R.; Long, M.; Driskill, K.; Lyons, C.; Donnadieu, B.; Bollinger, J. C.; Webster, C. E.; Zhao, X. Electronic and steric tuning of catalytic H2 evolution by cobalt complexes with pentadentate polypyridyl-amine ligands. J. Am. Chem. Soc. 2018, 140, 9219−9229.  doi: 10.1021/jacs.8b05108

    66. [66]

      Irfan, R. M.; Jiang, D.; Sun, Z.; Lu, D.; Du, P. Enhanced photocatalytic H2 production on CdS nanorods with simple molecular bidentate cobalt complexes as cocatalysts under visible light. Dalton Trans. 2016, 45, 12897−12905.  doi: 10.1039/C6DT02148D

    67. [67]

      Xu, J. X.; Yuan, Y.; Zou, S.; Chen, O.; Zhang, D. A divide-and conquer strategy for quantification of light absorption, scattering, and emission properties of fluorescent nanomaterials in solutions. Anal. Chem. 2019, 91, 8540−8548.  doi: 10.1021/acs.analchem.9b01803

    68. [68]

      Natali, M. Elucidating the key role of pH on light-driven hydrogen evolution by a molecular cobalt catalyst. ACS Catal. 2017, 7, 1330−1339.  doi: 10.1021/acscatal.6b03087

    69. [69]

      Cao, S. W.; Liu, X. F.; Yuan, Y. P.; Zhang, Z. Y.; Fang, J.; Loo, S. C. J.; Barber, J.; Sum, T. C.; Xue, C. Artificial photosynthetic hydrogen evolution over g-C3N4 nanosheets coupled with cobaloxime. Phys. Chem. Chem. Phys. 2013, 15, 18363−18366.  doi: 10.1039/c3cp53350f

  • 加载中
    1. [1]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    2. [2]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    3. [3]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    4. [4]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    7. [7]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    12. [12]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    13. [13]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    14. [14]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    15. [15]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    16. [16]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    17. [17]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    18. [18]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    19. [19]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    20. [20]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

Metrics
  • PDF Downloads(2)
  • Abstract views(188)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return