Probing Photocatalytic Hydrogen Evolution of Cobalt Complexes: Experimental and Theoretical Methods
- Corresponding author: Ti-Fang MIAO, miaotifang@163.com Yun XU, xuyun88@163.com
Citation: Hai-Su WU, Ti-Fang MIAO, Hai-Xia SHI, Yun XU, Xian-Liang FU, Li QIAN. Probing Photocatalytic Hydrogen Evolution of Cobalt Complexes: Experimental and Theoretical Methods[J]. Chinese Journal of Structural Chemistry, ;2021, 40(12): 1696-1709. doi: 10.14102/j.cnki.0254-5861.2011-3239
Kim, D.; Sakimoto, K. K.; Hong, D.; Yang, P. Artificial photosynthesis for sustainable fuel and chemical production. Angew. Chem. Int. Ed. 2015, 54, 3259−3266.
doi: 10.1002/anie.201409116
Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511−518.
doi: 10.1038/nphoton.2012.175
Artero, V.; Chavarot-Kerlidou, M.; Fontecave, M. Splitting water with cobalt. Angew. Chem. Int. Ed. 2011, 50, 7238−7266.
doi: 10.1002/anie.201007987
Fukuzumi, S.; Lee, Y. M.; Nam, W. Thermal and photocatalytic production of hydrogen with earth-abundant metal complexes. Coord. Chem. Rev. 2018, 355, 54−73.
doi: 10.1016/j.ccr.2017.07.014
Gao, C.; Wang, J.; Xu, H.; Xiong, Y. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 2017, 46, 2799−2823.
doi: 10.1039/C6CS00727A
Du, P.; Eisenberg, R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energ. Environ. Sci. 2012, 5, 6012−6021.
doi: 10.1039/c2ee03250c
Eckenhoff, W. T. Molecular catalysts of Co, Ni, Fe, and Mo for hydrogen generation in artificial photosynthetic systems. Coord. Chem. Rev. 2018, 373, 295−316.
doi: 10.1016/j.ccr.2017.11.002
Eckenhoff, W. T.; McNamara, W. R.; Du, P.; Eisenberg, R. Cobalt complexes as artificial hydrogenases for the reductive side of water splitting. Biochim. Biophys. Acta 2013, 1827, 958−973.
doi: 10.1016/j.bbabio.2013.05.003
Huo, J.; Zhang, Y. B.; Zou, W. Y.; Hu, X.; Deng, Q.; Chen, D. Mini-review on an engineering approach towards the selection of transition metal complex-based catalysts for photocatalytic H2 production. Catal. Sci. Technol. 2019, 9, 2716−2727.
doi: 10.1039/C8CY02581A
Dong, X. Y.; Zhang, M.; Pei, R. B.; Wang, Q.; Wei, D. H.; Zang, S. Q.; Fan, Y. T.; Mak, T. C. A crystalline copper(II) coordination polymer for the efficient visible-light-driven generation of hydrogen. Angew. Chem. Int. Ed. 2016, 55, 2113−2117.
doi: 10.1002/anie.201510380
Zhong, M.; Li, H.; Chen, J.; Tao, L.; Li, C.; Yang, Q. Cooperative activation of cobalt-salen complexes for epoxide hydration promoted on flexible porous organic frameworks. Chem. Eur. J. 2017, 23, 11504−11508.
doi: 10.1002/chem.201702810
Song, T.; Zhang, L.; Zhang, P.; Zeng, J.; Wang, T.; Ali, A.; Zeng, H. Stable and improved visible-light photocatalytic hydrogen evolution using copper(II)-organic frameworks: engineering the crystal structures. J. Mater. Chem. A 2017, 5, 6013−6018.
doi: 10.1039/C7TA00095B
Pullen, S.; Fei, H.; Orthaber, A.; Cohen, S. M.; Ott, S. Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a metal-organic framework. J. Am. Chem. Soc. 2013, 135, 16997−17003.
doi: 10.1021/ja407176p
Hooe, S. L.; Rheingold, A. L.; Machan, C. W. Electrocatalytic reduction of dioxygen to hydrogen peroxide by a molecular manganese complex with a bipyridine-containing Schiff base ligand. J. Am. Chem. Soc. 2018, 140, 3232−3241.
doi: 10.1021/jacs.7b09027
Han, Z.; McNamara, W. R.; Eum, M. S.; Holland, P. L.; Eisenberg, R. A nickel thiolate catalyst for the long-lived photocatalytic production of hydrogen in a noble-metal-free system. Angew. Chem. Int. Ed. 2012, 51, 1667−1770.
doi: 10.1002/anie.201107329
Zhang, D. Modification of the optical and electronic properties of TiO2 by n anion-doping for augmentation of the visible light assisted photocatalytic performance. Chin. J. Struct. Chem. 2018, 59, 1353–1361.
doi: 10.1134/S0022476618060148
Li, C. B.; Gong, P.; Yang, Y.; Wang, H. Y. Cobalt(II)-salen complexes for photocatalytic hydrogen production in noble metal-free molecular systems. Catal. Lett. 2018, 148, 3158−3164.
doi: 10.1007/s10562-018-2509-y
Hogue, D. R. W.; Schott, O.; Hanan, G. S.; Brooker, S. A smorgasbord of 17 cobalt complexes active for photocatalytic hydrogen evolution. Chem. Eur. J. 2018, 24, 9820−9832.
doi: 10.1002/chem.201800396
Asraf, M. A.; Younus, H. A.; Ezugwu, C. I.; Mehta, A.; Verpoort, F. Cobalt salophen complexes for light-driven water oxidation. Catal. Sci. Technol. 2016, 6, 4271−4282.
doi: 10.1039/C5CY02157J
Huang, Y.; Zhang, B. Active cocatalysts for photocatalytic hydrogen evolution derived from nickel or cobalt amine complexes. Angew. Chem. Int. Ed. 2017, 56, 14804−14806.
doi: 10.1002/anie.201708844
Ishizuka, T.; Watanabe, A.; Kotani, H.; Hong, D.; Satonaka, K.; Wada, T.; Shiota, Y.; Yoshizawa, K.; Ohara, K.; Yamaguchi, K.; Kato, S.; Fukuzumi, S.; Kojima, T. Homogeneous photocatalytic water oxidation with a dinuclear Co(III)-pyridylmethylamine complex. Inorg. Chem. 2016, 55, 1154−1164.
doi: 10.1021/acs.inorgchem.5b02336
Banerjee, A.; Frontera, A.; Chattopadhyay, S. Methylene spacer regulated variation in molecular and crystalline architectures of cobalt(Ⅲ) complexes with reduced Schiff base ligands: a combined experimental and theoretical study. Dalton Trans. 2019, 48, 11433−11447.
doi: 10.1039/C9DT01818B
Zhao, X.; Wang, P.; Liang, G.; Smith, N.; Hill, K.; Donnadieu, B.; Webster, C. E. Enhanced catalytic hydrogen evolution in neutral water by a cobalt complex with softer polypyridyl ligand. Angew. Chem. Int. Ed. 2020, 59, 12694−12697.
doi: 10.1002/anie.202002640
Sasaki, Y.; Kato, H.; Kudo, A. [Co(bpy)3] (3+/2+) and [Co(phen)3] (3+/2+) electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J. Am. Chem. Soc. 2013, 135, 5441−5449.
doi: 10.1021/ja400238r
Khandelwal, S.; Zamader, A.; Nagayach, V.; Dolui, D.; Mir, A. Q.; Dutta, A. Inclusion of peripheral basic groups activates dormant cobalt-based molecular complexes for catalytic H2 evolution in water. ACS Catal. 2019, 9, 2334−2344.
doi: 10.1021/acscatal.8b04640
Elgrishi, N.; Kurtz, D. A.; Dempsey, J. L. Reaction parameters influencing cobalt hydride formation kinetics: implications for benchmarking H2-evolution catalysts. J. Am. Chem. Soc. 2017, 139, 239−244.
doi: 10.1021/jacs.6b10148
Cheng, D.; Negreiros, F. R.; Apra, E.; Fortunelli, A. Computational approaches to the chemical conversion of carbon dioxide. ChemSusChem. 2013, 6, 944−965.
doi: 10.1002/cssc.201200872
Zhang, L.; Lin, C. Y.; Zhang, D.; Gong, L.; Zhu, Y.; Zhao, Z.; Xu, Q.; Li, H.; Xia, Z. Guiding principles for designing highly efficient metal-free carbon catalysts. Adv. Mater. 2019, 31, e1805252.
doi: 10.1002/adma.201805252
Rhodes, B.; Rowling, S.; Tidswell, P.; Woodward, S.; Brown, S. M. Aerobic epoxidation via alkyl-2-oxocyclopentanecarboxylate co-oxidation with cobalt or manganese Jacobsen-type catalysts. J. Mol. Catal. A: Chem. 1997, 116, 375−384.
doi: 10.1016/S1381-1169(96)00360-3
Felicio, R. C.; Cavalheiro, E. T. G.; Dockal, E. R. Preparation, characterization and thermogravimetric studies of [N, N΄-cis-1, 2-cyclohexylene bis(salicylideneaminato)] cobalt(II) and [N, N′-(±)-trans-1, 2-cyclo-hexylene bis(salicylideneaminato)] cobalt(II). Polyhedron 2001, 20, 261−268.
doi: 10.1016/S0277-5387(00)00620-3
Abdulghani, A. J.; Khaleel, A. M. Preparation and characterization of di-, tri-, and tetranuclear Schiff base complexes derived from diamines and 3, 4-dihydroxybenzaldehyde. Bioinorg. Chem. Appl. 2013, 2013, 277−306.
Liu, W. Q.; Zhou, S. L.; Fan, M. Z. Synthesis and crystal structure of a dinuclear Cu(Ⅱ) complex based on a carboxyl-substituted 1H-1, 2, 3-triazole and its DNA cleavage activity. Chin. J. Struct. Chem. 2015, 34, 917–924.
Li, H.; Xi, D.; Niu, Y.; Wang, C.; Xu, F.; Liang, L.; Xu. P. Design, synthesis and biological evaluation of cobalt(II)-Schiff base complexes as ATP-noncompetitive MEK1 inhibitors. J. Inorg. Biochem. 2019, 195, 174−181.
doi: 10.1016/j.jinorgbio.2019.03.022
Dong, J.; Wang, M.; Zhang, P.; Yang, S.; Liu, J.; Li, X.; Sun, L. Promoting effect of electrostatic interaction between a cobalt catalyst and a xanthene dye on visible-light-driven electron transfer and hydrogen production. J. Phys. Chem. C 2011, 115, 15089−15096.
doi: 10.1021/jp2040778
Dzygiel, P.; Reeve, T. B.; Piarulli, U.; Krupicka, M.; Tvaroska, I.; Gennari, C. Resolution of racemic N-benzyl-amino acids by liquid-liquid extraction: a practical method using a lipophilic chiral cobalt(III) salen complex and mechanistic studies. Eur. J. Org. Chem. 2008, 7, 1253−1264.
Kennedy, B. J.; Fallon, G. D.; Gatehouse, B. M. K. C.; Murray, K. S. Spin-state differences and spin crossover in five-coordinate lewis base adducts of cobalt(I1) Schiff base complexes. Structure of the high-spin (N, N΄-o -phenylenebis(salicylaldiminato)) cobalt(II)-2-methylimidazole. Inorg. Chem. 1984, 23, 580−588.
doi: 10.1021/ic00173a019
Wöltinger, J.; Bäckvall, J. E.; Zsigmond, Â. Zeolite-encapsulated cobalt salophen complexes as efficient oxygen-activating catalysts in palladium-catalyzed aerobic 1, 4-oxidation of 1, 3-dienes. Chem. Eur. J. 1999, 5, 1460−1467.
doi: 10.1002/(SICI)1521-3765(19990503)5:5<1460::AID-CHEM1460>3.0.CO;2-I
Chen, H.; Sun, Z.; Ye, S.; Lu, D.; Du, P. Molecular cobalt-salen complexes as novel cocatalysts for highly efficient photo-catalytic hydrogen production over a CdS nanorod photosensitizer under visible light. J. Mater. Chem. A 2015, 3, 15729−15737.
doi: 10.1039/C5TA03515E
Jain, S.; Venkatasubbaiah, K.; Jones, C. W.; Davis, R. J. Factors influencing recyclability of Co(III)-salen catalysts in the hydrolytic kinetic resolution of epichlorohydrin. J. Mol. Catal. A Chem. 2010, 316, 8−15.
doi: 10.1016/j.molcata.2009.10.025
Fan, G. Z.; Zhao, H. T.; Duan, Z. X.; Fang, T.; Wan, M. H.; He, L. N. A novel method to synthesize diphenyl carbonate from carbon dioxide and phenol in the presence of methanol. Catal. Sci. Technol. 2011, 1, 1138−1141.
doi: 10.1039/c1cy00208b
Fast, A.; Esfandiari, N. M.; Blum, S. A. Small number of active sites and single-locus kinetics revealed in (salph) Co-catalyzed ethylene oxide polymerization. ACS Catal. 2013, 3, 2150−2153.
doi: 10.1021/cs400640g
Peretti, K. L.; Ajiro, H.; Cohen, C. T.; Lobkovsky, E. B.; Coates, G. W. A highly active, isospecific cobalt catalyst for propylene oxide polymerization. J. Am. Chem. Soc. 2005, 127, 11566−11567.
doi: 10.1021/ja053451y
Shyu, S. G.; Tseng, C. K.; Chang, C. K.; Chen, H. P.; Liu, H. C.; Twu, J. Effect of metal salen complex in the base catalyzed catalytic reaction between carbon dioxide and epoxides. J. Chin. Chem. Soc. 2012, 59, 443−451.
doi: 10.1002/jccs.201100670
Joseph, T.; Sawant, D. P.; Gopinath, C. S.; Halligudi, S. B. Zeolite encapsulated ruthenium and cobalt Schiff base complexes catalyzed allylic oxidation of α-pinene. J. Mol. Catal. A: Chem. 2002, 184, 289−299.
doi: 10.1016/S1381-1169(02)00010-9
Jain, S.; Venkatasubbaiah, K.; Jones, C. W.; Davis, R. J. Factors influencing recyclability of Co(III)-salen catalysts in the hydrolytic kinetic resolution of epichlorohydrin. J. Mol. Catal. A: Chem. 2010, 316, 8−15.
doi: 10.1016/j.molcata.2009.10.025
Chen, H.; Sun, Z.; Ye, S.; Lu, D.; Du, P. Molecular cobalt-salen complexes as novel cocatalysts for highly efficient photocatalytic hydrogen production over a CdS nanorod photosensitizer under visible light. J. Mat. Chem. A 2015, 3, 15729−15737.
doi: 10.1039/C5TA03515E
Kumar, D. N.; Garg, B. S. Some new cobalt(II) complexes: synthesis, characterization and thermal studies. J. Therm. Anal. Calorim. 2002, 69, 607−616.
doi: 10.1023/A:1019976226610
Sakamoto, R.; Masaaki, O.; Fukita, N.; Takahashi, K. Copper(II) compounds extended by 5-carboxysalicylaldehyde and its Schiff bases: interplay of two metal-binding sites and intermolecular stacking contributing to their network and bulk structures. Bull. Chem. Soc. Jpn. 1998, 71, 2365−4701.
doi: 10.1246/bcsj.71.2365
Percy, G. C.; Thornton, D. A. Infrared spectra of N-aryl salicylaldimine complexes substituted in both aryl rings. J. Inorg. Nucl. Chem. 1973, 35, 2319−2327.
doi: 10.1016/0022-1902(73)80296-9
Ueno, K.; Martell, A. E. Infrared studies on synthetic oxygen carriers. J. Phys. Chem. 1956, 60, 1270−1275.
doi: 10.1021/j150543a029
Felicio, R. C.; Cavalheiro, E. T. G.; Dockal, E. R. Preparation, characterization and thermogravimetric studies of [N, N΄-cis-1, 2-cyclohexylene bis(salicylideneaminato)]cobalt(II) and [N, N΄-(±)-trans-1, 2-cyclo-hexylene bis(salicylideneaminato)]cobalt(II). Polyhedron 2011, 20, 261−268.
Miao, T.; Liao, S.; Qian, L.; Zheng, K.; Ji, L. Electronic structures, DNA-binding and spectral properties of Co(III) complexes [Co(bpy)2(L)]3+ (L = pip, odhip, hnoip). Biophys. Chem. 2009, 140, 1−8.
doi: 10.1016/j.bpc.2008.11.007
Vincenzo, B.; Maurizio, C. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 1998, 102, 1995−2001.
doi: 10.1021/jp9716997
Maurizio, C.; Nadia, R.; Giovanni, S.; Vincenzo, B. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669−681.
doi: 10.1002/jcc.10189
Kuntz, I. D. Structure-based strategies for drug design and discovery. Science 1992, 257, 1078−1082.
doi: 10.1126/science.257.5073.1078
Brian, K. S.; Dale, L. B.; Irwin, D. K. Molecular docking using shape descriptors. J. Comp. Chem. 1992, 13, 380−397.
doi: 10.1002/jcc.540130311
Mats, H. M.; Ulf, R.; Geometry, reduction potential, and reorganization energy of the binuclear CuA site, studied by density functional theory. J. Am. Chem. Soc. 2001, 123, 7866−7876.
doi: 10.1021/ja010315u
Prabha, S.; Marcus, R. A. Electron-transfer reactions in proteins: electronic coupling in myoglobin. J. Chem. Phys. B 1993, 97, 6111−6114.
doi: 10.1021/j100125a004
Robert, J. C.; Marshall, D. N. Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements. Chem. Phys. Lett. 1996, 249, 15−19.
doi: 10.1016/0009-2614(95)01310-5
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 16, Revision C. 01, Gaussian, Inc. : Wallingford CT 2019.
Dong, J.; Wang, M.; Zhang, P.; Yang, S.; Liu, J.; Li, X.; Sun, L. Promoting effect of electrostatic interaction between a cobalt catalyst and a xanthene dye on visible-light-driven electron transfer and hydrogen production. J. Phys. Chem. C 2011, 115, 15089−15096.
doi: 10.1021/jp2040778
Chen, H.; Sun, Z.; Ye, S.; Lu, D.; Du, P. Molecular cobalt-salen complexes as novel cocatalysts for highly efficient photocatalytic gydrogen production over a CdS nanorod photosensitizer under visible light. J. Mater. Chem. A 2015, 3, 15729−15737.
doi: 10.1039/C5TA03515E
Fu, X.; Wang, J.; Huang, D.; Meng, S.; Zhang, Z.; Li, L.; Miao, T.; Chen, S. Trace amount of SnO2-decorated ZnSn(OH)6 as highly efficient photocatalyst for decomposition of gaseous benzene: synthesis, photocatalytic activity, and the unrevealed synergistic effect between ZnSn(OH)6 and SnO2. ACS Catal. 2015, 6, 957−968.
Lin, C.; Wang, H.; Liu, S.; Li, C.; Chu, B.; Yan, Q. Preparation of magnetic Co0.5Zn0.5Fe2O4/AgBr hybrids for the visible-light driven degradation of methyl orange. Mater. Sci. Semicond. Process 2017, 73, 67−71.
Wang, P.; Liang, G.; Reddy, M. R.; Long, M.; Driskill, K.; Lyons, C.; Donnadieu, B.; Bollinger, J. C.; Webster, C. E.; Zhao, X. Electronic and steric tuning of catalytic H2 evolution by cobalt complexes with pentadentate polypyridyl-amine ligands. J. Am. Chem. Soc. 2018, 140, 9219−9229.
doi: 10.1021/jacs.8b05108
Irfan, R. M.; Jiang, D.; Sun, Z.; Lu, D.; Du, P. Enhanced photocatalytic H2 production on CdS nanorods with simple molecular bidentate cobalt complexes as cocatalysts under visible light. Dalton Trans. 2016, 45, 12897−12905.
doi: 10.1039/C6DT02148D
Xu, J. X.; Yuan, Y.; Zou, S.; Chen, O.; Zhang, D. A divide-and conquer strategy for quantification of light absorption, scattering, and emission properties of fluorescent nanomaterials in solutions. Anal. Chem. 2019, 91, 8540−8548.
doi: 10.1021/acs.analchem.9b01803
Natali, M. Elucidating the key role of pH on light-driven hydrogen evolution by a molecular cobalt catalyst. ACS Catal. 2017, 7, 1330−1339.
doi: 10.1021/acscatal.6b03087
Cao, S. W.; Liu, X. F.; Yuan, Y. P.; Zhang, Z. Y.; Fang, J.; Loo, S. C. J.; Barber, J.; Sum, T. C.; Xue, C. Artificial photosynthetic hydrogen evolution over g-C3N4 nanosheets coupled with cobaloxime. Phys. Chem. Chem. Phys. 2013, 15, 18363−18366.
doi: 10.1039/c3cp53350f
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
Huirong LIU , Hao XU , Dunru ZHU , Junyong ZHANG , Chunhua GONG , Jingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Huizhong Wu , Ruiheng Liang , Ge Song , Zhongzheng Hu , Xuyang Zhang , Minghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Deqi Fan , Yicheng Tang , Yemei Liao , Yan Mi , Yi Lu , Xiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109