Citation: Liu-Wei ZHANG, Rui-Chen SHEN, Jie TAN, Quan YUAN. Influence of Doped Ions on Persistent Luminescence Materials: a Review[J]. Chinese Journal of Structural Chemistry, ;2022, 41(2): 220214. doi: 10.14102/j.cnki.0254-5861.2011-3237 shu

Influence of Doped Ions on Persistent Luminescence Materials: a Review

  • Corresponding author: Jie TAN, tanjie0416@hnu.edu.cn Quan YUAN, yuanquan@whu.edu.cn
  • Received Date: 26 April 2021
    Accepted Date: 2 July 2021

    Fund Project: the Natural Science Foundation of Hunan Province, China 2020JJ4173the Natural Science Foundation of Hunan Province, China 2020JJ5038

Figures(6)

  • Persistent luminescence materials (PLMs) are potential luminescent materials which can remain emitting light after stopping the excitation. PLMs can avoid the autofluorescence of biological tissues, and play an important role in biosensing, targeted imaging and other fields. However, the applications of PLMs are often restricted by their weak persistent luminescence and short decay time after excitation. Doped ions will directly affect the luminescence centers and trap levels of PLMs, thereby leading to great differences in the optical performance of PLMs. Given this, the selection of doped ions to improve the optical performance of PLMs has become a fascinating research direction in recent years. At present, the published reviews mostly focus on the surface modifications and applications of PLMs. However, the influence of doped ions on the structure and optical performance of PLMs is seldom summarized. In this review, the influence of doped ions on the structure and optical performance of PLMs is introduced from three aspects: the type of doped ions, the number of types of doped ions, and the content of doped ions. Furthermore, we highlight recent achievements and mechanisms in the development of PLMs. Finally, we also propose and discuss the future opportunities and current challenges of ion-doped PLMs.
  • 加载中
    1. [1]

      Van den Eeckhout, K.; Smet, P. F.; Poelman, D. Persistent luminescence in Eu2+-doped compounds: a review. Materials 2010, 3, 2536-2566.  doi: 10.3390/ma3042536

    2. [2]

      Zhou, Z.; Zheng, W.; Kong, J.; Liu, Y.; Huang, P.; Zhou, S.; Chen, Z.; Shi, J.; Chen, X. Rechargeable and LED-activated ZnGa2O4: Cr3+ near-infrared persistent luminescence nanoprobes for background-free biodetection. Nanoscale 2017, 9, 6846-6853.  doi: 10.1039/C7NR01209H

    3. [3]

      Song, L.; Li, P. P.; Yang, W.; Lin, X. H.; Liang, H.; Chen, X. F.; Liu, G.; Li, J.; Yang, H. H. Low-dose X-ray activation of W(VI)-doped persistent luminescence nanoparticles for deep-tissue photodynamic therapy. Adv. Funct. Mater. 2018, 28, 1707496-10.  doi: 10.1002/adfm.201707496

    4. [4]

      Song, L.; Lin, X. H.; Song, X. R.; Chen, S.; Chen, X. F.; Li, J.; Yang, H. H. Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging. Nanoscale 2017, 9, 2718-2722  doi: 10.1039/C6NR09553D

    5. [5]

      Liu, Y.; Liu, J. M.; Zhang, D.; Ge, K.; Wang, P.; Liu, H.; Fang, G.; Wang, S. Persistent luminescence nanophosphor involved near-infrared optical bioimaging for investigation of foodborne probiotics biodistribution in vivo: a proof-of-concept study. J. Agric. Food. Chem. 2017, 65, 8229-8240.  doi: 10.1021/acs.jafc.7b02870

    6. [6]

      Xue, Z.; Li, X.; Li, Y.; Jiang, M.; Liu, H.; Zeng, S.; Hao, J. X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging. ACS Appl. Mater. Inter. 2017, 9, 22132-22142.  doi: 10.1021/acsami.7b03802

    7. [7]

      Lv, Y.; Ding, D.; Zhuang, Y.; Feng, Y.; Shi, J.; Zhang, H.; Zhou, T. L.; Chen, H.; Xie, R. J. Chromium-doped zinc gallogermanate@zeolitic imidazolate framework-8: a multifunctional nanoplatform for rechargeable in vivo persistent luminescence imaging and pH-responsive drug release. ACS Appl. Mater. Inter. 2019, 11, 1907-1916.  doi: 10.1021/acsami.8b19172

    8. [8]

      Li, Y.; Gecevicius, M.; Qiu, J. Long persistent phosphors-from fundamentals to applications. Chem. Soc. Rev. 2016, 45, 2090-2136.  doi: 10.1039/C5CS00582E

    9. [9]

      Chander, H.; Haranath, D.; Shanker, V.; Sharma, P. Synthesis of nanocrystals of long persisting phosphor by modified combustion technique. J. Cryst. Growth 2004, 271, 307-312.  doi: 10.1016/j.jcrysgro.2004.07.026

    10. [10]

      Lecuyer, T.; Teston, E.; Ramirez Garcia, G.; Maldiney, T.; Viana, B.; Seguin, J.; Mignet, N.; Scherman, D.; Richard, C. Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics 2016, 6, 2488-2524.  doi: 10.7150/thno.16589

    11. [11]

      Yamamoto, H.; Matsuzawa, T. Mechanism of long phosphorescence of SrAl2O4: Eu2+, Dy3+ and CaAl2O4: Eu2+, Nd3+. J. Lumin. 1997, 72-74, 287-289.  doi: 10.1016/S0022-2313(97)00012-4

    12. [12]

      Zhuang, Y.; Lv, Y.; Wang, L.; Chen, W.; Zhou, T. L.; Takeda, T.; Hirosaki, N.; Xie, R. J. Trap depth engineering of SrSi2O2N2: Ln2+, Ln3+ (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) persistent luminescence materials for information storage applications. ACS Appl. Mater. Inter. 2018, 10, 1854-1864.  doi: 10.1021/acsami.7b17271

    13. [13]

      Cui, G.; Yang, X.; Zhang, Y.; Fan, Y.; Chen, P.; Cui, H.; Liu, Y.; Shi, X.; Shang, Q.; Tang, B. Round-the-clock photocatalytic hydrogen production with high efficiency by a long-afterglow material. Angew. Chem. Int. Ed. 2019, 58, 1340-1344.  doi: 10.1002/anie.201810544

    14. [14]

      Liu, J.; Lecuyer, T.; Seguin, J.; Mignet, N.; Scherman, D.; Viana, B.; Richard, C. Imaging and therapeutic applications of persistent luminescence nanomaterials. Adv. Drug Deliver. Rev. 2019, 138, 193-210.  doi: 10.1016/j.addr.2018.10.015

    15. [15]

      Luo, Q.; Wang, W.; Tan, J.; Yuan, Q. Surface modified persistent luminescence probes for biosensing and bioimaging: a review. Chin. J. Chem. 2021, 39, 1009-1021.  doi: 10.1002/cjoc.202000583

    16. [16]

      Tuerdi, A.; Abdukayum, A. Dual-functional persistent luminescent nanoparticles with enhanced persistent luminescence and photocatalytic activity. RSC Adv. 2019, 9, 17653-17657.  doi: 10.1039/C9RA02235J

    17. [17]

      Zhao, H. X.; Yang, C. X.; Yan, X. P. Fabrication and bioconjugation of B(III) and Cr(III) co-doped ZnGa2O4 persistent luminescent nanoparticles for dual-targeted cancer bioimaging. Nanoscale 2016, 8, 18987-18994.  doi: 10.1039/C6NR06259H

    18. [18]

      Li, D.; Wang, Y.; Xu, K.; Zhao, H.; Hu, Z. Effect of H3BO3 on the persistent luminescence and photocatalytic properties of ZnGa2O4 phosphors. Opt. Mater. 2014, 36, 1836-1840.  doi: 10.1016/j.optmat.2014.04.027

    19. [19]

      Abdukayum, A.; Chen, J. T.; Zhao, Q.; Yan, X. P. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 2013, 135, 14125-14133.  doi: 10.1021/ja404243v

    20. [20]

      Rosticher, C.; Viana, B.; Fortin, M. A.; Lagueux, J.; Faucher, L.; Chanéac, C. Gadolinium oxysulfide nanoprobes with both persistent luminescent and magnetic properties for multimodal imaging. RSC Adv. 2016, 6, 55472-55478.  doi: 10.1039/C6RA05030A

    21. [21]

      Wang, J.; Ma, Q.; Zheng, W.; Liu, H.; Yin, C.; Wang, F.; Chen, X.; Yuan, Q.; Tan, W. One-dimensional luminous nanorods featuring tunable persistent luminescence for autofluorescence-free biosensing. ACS Nano 2017, 11, 8185-8191.  doi: 10.1021/acsnano.7b03128

    22. [22]

      Gong, Z.; Liu, Y.; Yang, J.; Yan, D.; Zhu, H.; Liu, C.; Xu, C.; Zhang, H. A Pr3+ doping strategy for simultaneously optimizing the size and near infrared persistent luminescence of ZGGO: Cr(3+) nanoparticles for potential bio-imaging. Phys. Chem. Chem. Phys. 2017, 19, 24513-24521.  doi: 10.1039/C7CP02909H

    23. [23]

      Li, Y. J.; Yan, X. P. Synthesis of functionalized triple-doped zinc gallogermanate nanoparticles with superlong near-infrared persistent luminescence for long-term orally administrated bioimaging. Nanoscale 2016, 8, 14965-14970.  doi: 10.1039/C6NR04950H

    24. [24]

      Jiang, R.; Yang, J.; Meng, Y.; Yan, D.; Liu, C.; Xu, C.; Liu, Y. X-ray/red-light excited ZGGO: Cr, Nd nanoprobes for NIR-I/II afterglow imaging. Dalton T. 2020, 49, 6074-6083.  doi: 10.1039/D0DT00247J

    25. [25]

      Wang, J.; Ma, Q.; Wang, Y.; Shen, H.; Yuan, Q. Recent progress in biomedical applications of persistent luminescence nanoparticles. Nanoscale 2017, 9, 6204-6218.  doi: 10.1039/C7NR01488K

    26. [26]

      Singh, S. K. Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications. RSC Adv. 2014, 4, 58674-58698.  doi: 10.1039/C4RA08847F

    27. [27]

      Bessière, A.; Jacquart, S.; Priolkar, K.; Lecointre, A.; Viana, B.; Gourier, D. ZnGa2O4: Cr3+: a new red long-lasting phosphor with high brightness. Opt. Express 2011, 19, 10131-10137.  doi: 10.1364/OE.19.010131

    28. [28]

      Allix, M.; Chenu, S.; Véron, E.; Poumeyrol, T.; Kouadri Boudjelthia, E. A.; Alahraché, S.; Porcher, F.; Massiot, D.; Fayon, F. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4. Chem. Mater. 2013, 25, 1600-1606.  doi: 10.1021/cm304101n

    29. [29]

      Dhak, P.; Gayen, U. K.; Mishra, S.; Pramanik, P.; Roy, A. Optical emission spectra of chromium doped nanocrystalline zinc gallate. J. Appl. Phys. 2009, 106, 063721-6.  doi: 10.1063/1.3224866

    30. [30]

      Kim, J. S.; Kim, J. S.; Park, H. L. Optical and structural properties of nanosized ZnGa2O4: Cr3+ phosphor. Solid State Commun. 2004, 131, 735-738.  doi: 10.1016/j.ssc.2004.07.026

    31. [31]

      Xu, J.; Murata, D.; Ueda, J.; Viana, B.; Tanabe, S. Toward rechargeable persistent luminescence for the first and third biological windows via persistent energy transfer and electron trap redistribution. Inorg. Chem. 2018, 57, 5194-5203.  doi: 10.1021/acs.inorgchem.8b00218

    32. [32]

      Feng, P.; Li, G.; Guo, H.; Liu, D.; Ye, Q.; Wang, Y. Identifying a cyan ultralong persistent phosphorescence (Ba, Li) (Si, Ge, P)2O5: Eu2+, Pr3+ via solid solution strategy. J. Phys. Chem. C 2019, 123, 3102-3109.  doi: 10.1021/acs.jpcc.8b11084

    33. [33]

      Bai, Q.; Zhao, S.; Guan, L.; Wang, Z.; Li, P.; Xu, Z. Design and control of the luminescence of Cr3+-doped phosphors in the near-infrared I region by fitting the crystal field. Cryst. Growth Des. 2018, 18, 3178-3186.  doi: 10.1021/acs.cgd.8b00273

    34. [34]

      Takahashi, Y.; Ando, M.; Ihara, R.; Fujiwara, T. Green-emissive Mn-activated nanocrystallized glass with willemite-type Zn2GeO4. Opt. Mater. Express 2011, 1, 372-378.  doi: 10.1364/OME.1.000372

    35. [35]

      Terraschke, H.; Wickleder, C. UV, blue, green, yellow, red, and small: newest developments on Eu2+-doped nanophosphors. Chem. Rev. 2015, 115, 11352-11378.  doi: 10.1021/acs.chemrev.5b00223

    36. [36]

      Cheng, J.; Li, P.; Wang, Z.; Li, Z.; Tian, M.; Wang, C.; Yang, Z. Color selective manipulation in Li2ZnGe3O8: Mn2+ by multiple-cation substitution on different crystal-sites. Dalton T. 2018, 47, 4293-4300.  doi: 10.1039/C7DT04552B

    37. [37]

      Li, Z.; Wang, Q.; Wang, Y.; Ma, Q.; Wang, J.; Li, Z.; Li, Y.; Lv, X.; Wei, W.; Chen, L.; Yuan, Q. Background-free latent fingerprint imaging based on nanocrystals with long-lived luminescence and pH-guided recognition. Nano Res. 2018, 11, 6167-6176.  doi: 10.1007/s12274-018-2133-6

    38. [38]

      Feng, Y.; Deng, D.; Zhang, L.; Liu, R.; Lv, Y. LRET-based functional persistent luminescence nanoprobe for imaging and detection of cyanide ion. Sens. Actuators B-Chem. 2019, 279, 189-196.  doi: 10.1016/j.snb.2018.09.111

    39. [39]

      Wang, J.; Ma, Q.; Wang, Y.; Li, Z.; Li, Z.; Yuan, Q. New insights into the structure-performance relationships of mesoporous materials in analytical science. Chem. Soc. Rev. 2018, 47, 8766-8803.  doi: 10.1039/C8CS00658J

    40. [40]

      Liu, H.; Hu, X.; Wang, J.; Liu, M.; Wei, W.; Yuan, Q. Direct low-temperature synthesis of ultralong persistent luminescence nanobelts based on a biphasic solution-chemical reaction. Chin. Chem. Lett. 2018, 29, 1641-1644.  doi: 10.1016/j.cclet.2018.02.005

    41. [41]

      Wang, Y.; Wang, J.; Ma, Q.; Li, Z.; Yuan, Q. Recent progress in background-free latent fingerprint imaging. Nano Res. 2018, 11, 5499-5518.  doi: 10.1007/s12274-018-2073-1

    42. [42]

      Cheng, S.; Shen, B.; Yuan, W.; Zhou, X.; Liu, Q.; Kong, M.; Shi, Y.; Yang, P.; Feng, W.; Li, F. Time-gated ratiometric detection with the same working wavelength to minimize the interferences from photon attenuation for accurate in vivo detection. ACS Cent. Sci. 2019, 5, 299-307.  doi: 10.1021/acscentsci.8b00763

    43. [43]

      Ou, X. Y.; Guo, T.; Song, L.; Liang, H. Y.; Zhang, Q. Z.; Liao, J. Q.; Li, J. Y.; Li, J.; Yang, H. H. Autofluorescence-free immunoassay using X-ray scintillating nanotags. Anal. Chem. 2018, 90, 6992-6997.  doi: 10.1021/acs.analchem.8b01315

    44. [44]

      Wang, J.; Ma, Q.; Liu, H.; Wang, Y.; Shen, H.; Hu, X.; Ma, C.; Yuan, Q.; Tan, W. Time-gated imaging of latent fingerprints and specific visualization of protein secretions via molecular recognition. Anal. Chem. 2017, 89, 12764-12770.  doi: 10.1021/acs.analchem.7b03003

    45. [45]

      Shen, H.; Wang, Y.; Wang, J.; Li, Z.; Yuan, Q. Emerging biomimetic applications of DNA nanotechnology. ACS Appl. Mater. Inter. 2019, 11, 13859-13873.  doi: 10.1021/acsami.8b06175

    46. [46]

      Jia, D.; Jia, W.; Evans, D. R.; Dennis, W. M.; Liu, H.; Zhu, J.; Yen, W. M. Trapping processes in CaS: Eu2+, Tm3+. J. Appl. Phys. 2000, 88, 3402-3407.  doi: 10.1063/1.1286419

    47. [47]

      Guo, C.; Tang, Q.; Huang, D.; Zhang, C.; Su, Q. Tunable color emission and afterglow in CaGa2S4: Eu2+, Ho3+ phosphor. Mater. Res. Bull. 2007, 42, 2032-2039.  doi: 10.1016/j.materresbull.2007.02.023

    48. [48]

      Denis, G.; Deniard, P.; Rocquefelte, X.; Benabdesselam, M.; Jobic, S. The thermally connected traps model applied to the thermoluminescence of Eu2+ doped Ba13-xAl22-2xSi10+2xO66 materials (x~0.6). Opt. Mater. 2010, 32, 941-945.  doi: 10.1016/j.optmat.2010.01.029

    49. [49]

      Struve, B.; Huber, G. The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystals. Appl. Phys. B 1985, 36, 195-201.  doi: 10.1007/BF00704574

    50. [50]

      Forster, L. S. The photophysics of chromium(III) complexes. Chem. Rev. 1990, 90, 331-353.  doi: 10.1021/cr00100a001

    51. [51]

      Maldiney, T.; Lecointre, A.; Viana, B.; Bessiere, A.; Bessodes, M.; Gourier, D.; Richard, C.; Scherman, D. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J. Am. Chem. Soc. 2011, 133, 11810-11815.  doi: 10.1021/ja204504w

    52. [52]

      Jia, G.; Lewis, L.; Wang, X. Cr(3+)-doped lanthanum gallogermanate phosphors with long persistent IR emission. Electrochem. Solid St. 2010, 13, J32-J34.  doi: 10.1149/1.3294520

    53. [53]

      Aitasalo, T.; Dereń, P.; Hölsä, J.; Jungner, H.; Krupa, J. C.; Lastusaari, M.; Legendziewicz, J.; Niittykoski, J.; Stręk, W. Persistent luminescence phenomena in materials doped with rare earth ions. J. Solid State Chem. 2003, 171, 114-122.  doi: 10.1016/S0022-4596(02)00194-9

    54. [54]

      Li, X.; Zhang, F.; Zhao, D. Highly efficient lanthanide upconverting nanomaterials: progresses and challenges. Nano Today 2013, 8, 643-676.  doi: 10.1016/j.nantod.2013.11.003

    55. [55]

      Dong, H.; Sun, L. D.; Yan, C. H. Basic understanding of the lanthanide related upconversion emissions. Nanoscale 2013, 5, 5703-5714.  doi: 10.1039/c3nr34069d

    56. [56]

      Cai, Y.; Liu, B.; Chen, W.; Qiu, J.; Xu, X.; Zhao, L.; Yu, X. X-ray and UV excited long persistent luminescence properties of Zn3Ga2GeO8: Cr3+, Pr3+. ECS J. Solid State Sc. 2020, 9, 066006-7.  doi: 10.1149/2162-8777/aba852

    57. [57]

      Sun, S. K.; Wang, H. F.; Yan, X. P. Engineering persistent luminescence nanoparticles for biological applications: from biosensing/bioimaging to theranostics. Acc. Chem. Res. 2018, 51, 1131-1143.  doi: 10.1021/acs.accounts.7b00619

    58. [58]

      Qu, B.; Zhang, B.; Wang, L.; Zhou, R.; Zeng, X. C. Mechanistic study of the persistent luminescence of CaAl2O4: Eu, Nd. Chem. Mater. 2015, 27, 2195-2202.  doi: 10.1021/acs.chemmater.5b00288

    59. [59]

      Pan, Z.; Lu, Y. Y.; Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 2011, 11, 58-63.

    60. [60]

      Wang, F.; Han, Y.; Lim, C. S.; Lu, Y.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M.; Liu, X. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061-1065.  doi: 10.1038/nature08777

    61. [61]

      Mikami, M.; Oshiyama, A. First-principles study of intrinsic defects in yttrium oxysulfide. Phys. Rev. B 1999, 60, 1707-1715.  doi: 10.1103/PhysRevB.60.1707

    62. [62]

      Li, P.; Peng, M.; Wondraczek, L.; Zhao, Y.; Viana, B. Red to near infrared ultralong lasting luminescence from Mn2+-doped sodium gallium aluminum germanate glasses and (Al, Ga)-albite glass-ceramics. J. Mater. Chem. C 2015, 3, 3406-3415.  doi: 10.1039/C5TC00047E

    63. [63]

      Kandpal, S. K.; Goundie, B.; Wright, J.; Pollock, R. A.; Mason, M. D.; Meulenberg, R. W. Investigation of the emission mechanism in milled SrAl2O4: Eu, Dy using optical and synchrotron X-ray spectroscopy. ACS Appl. Mater. Inter. 2011, 3, 3482-3486.  doi: 10.1021/am200710j

    64. [64]

      Liu, J. M.; Liu, Y. Y.; Zhang, D. D.; Fang, G. Z.; Wang, S. Synthesis of GdAlO3: Mn4+, Ge4+@Au core-shell nanoprobes with plasmon-enhanced near-infrared persistent luminescence for in vivo trimodality bioimaging. ACS Appl. Mater. Inter. 2016, 8, 29939-29949.  doi: 10.1021/acsami.6b09580

    65. [65]

      Li, Y.; Li, Y. Y.; Sharafudeen, K.; Dong, G. P.; Zhou, S. F.; Ma, Z. J.; Peng, M. Y.; Qiu, J. R. A strategy for developing near infrared long-persistent phosphors: taking MAlO3: Mn4+, Ge4+ (M = La, Gd) as an example. J. Mater. Chem. C 2014, 2, 2019-2027.  doi: 10.1039/c3tc32075h

    66. [66]

      Rosticher, C.; Viana, B.; Laurent, G.; Le Griel, P.; Chanéac, C. Insight into CaMgSi2O6: Eu2+, Mn2+, Dy3+ nanoprobes: influence of chemical composition and crystallinity on persistent red luminescence. Eur. J. Inorg. Chem. 2015, 3681-3687.

    67. [67]

      Katayama, Y.; Hashimoto, A.; Xu, J.; Ueda, J.; Tanabe, S. Thermoluminescence investigation on Y3Al5-xGaxO12: Ce3+-Bi3+ green persistent phosphors. J. Lumin. 2017, 183, 355-359.  doi: 10.1016/j.jlumin.2016.11.074

    68. [68]

      Zhuang, Y.; Katayama, Y.; Ueda, J.; Tanabe, S. A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors. Opt. Mater. 2014, 36, 1907-1912.  doi: 10.1016/j.optmat.2014.05.035

    69. [69]

      Ueda, J.; Aishima, K.; Nishiura, S.; Tanabe, S. Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics. Appl. Phys. Express 2011, 4, 042602-3.  doi: 10.1143/APEX.4.042602

    70. [70]

      Li, K.; Shang, M.; Zhang, Y.; Fan, J.; Lian, H.; Lin, J. Photoluminescence properties of single-component white-emitting Ca9Bi(PO4)7: Ce3+, Tb3+, Mn2+ phosphors for UV LEDs. J. Mater. Chem. C 2015, 3, 7096-7104.  doi: 10.1039/C5TC00927H

    71. [71]

      Zeng, W.; Wang, Y.; Han, S.; Chen, W.; Li, G.; Wang, Y.; Wen, Y. Design, synthesis and characterization of a novel yellow long-persistent phosphor: Ca2BO3Cl: Eu2+, Dy3+. J. Mater. Chem. C 2013, 1, 3004-3011.  doi: 10.1039/c3tc30182f

    72. [72]

      Trojan Piegza, J.; Niittykoski, J.; Hölsä, J.; Zych, E. Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-doped and Tb3+, Ca2+-codoped Lu2O3 materials. Chem. Mater. 2008, 20, 2252-2261.  doi: 10.1021/cm703060c

    73. [73]

      Cao, C.; Guo, S.; Moon, B. K.; Choi, B. C.; Jeong, J. H. Synthesis, grouping, and optical properties of REF3-KF nanocrystals. Mater. Chem. Phys. 2013, 139, 609-615.  doi: 10.1016/j.matchemphys.2013.02.005

    74. [74]

      Zhang, H.; Zheng, M.; Lei, B.; Liu, Y.; Xiao, Y.; Dong, H.; Zhang, Y.; Ye, S. Luminescence properties of red long-lasting phosphorescence phosphor AlN: Mn2+. ECS J. Solid State Sci. Technol. 2013, 2, R117-R120.  doi: 10.1149/2.006307jss

  • 加载中
    1. [1]

      Chaohui ZhengJing XiShiyi LongTianpei HeRui ZhaoXinyuan LuoNa ChenQuan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223

    2. [2]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    3. [3]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    4. [4]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    5. [5]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    6. [6]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    7. [7]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    8. [8]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    9. [9]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    10. [10]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    11. [11]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    12. [12]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    13. [13]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    14. [14]

      Jiayao Li Xinru Peng Shiwei Yin Changwei Wang Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213

    15. [15]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    16. [16]

      Jian WangBaohui WangPin MaYifei ZhangHonghong GongBiyun PengSen LiangYunchuan XieHailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714

    17. [17]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    18. [18]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    19. [19]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    20. [20]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

Metrics
  • PDF Downloads(3)
  • Abstract views(299)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return