Citation: Jian-Bo TONG, Xue-Chun XIAO, Ding LUO, Hai-Yin XU, Jie WANG. QSAR Study and Molecular Design of Isoquinolone Derivative JNK1 Inhibitors[J]. Chinese Journal of Structural Chemistry, ;2021, 40(12): 1586-1594. doi: 10.14102/j.cnki.0254-5861.2011-3227 shu

QSAR Study and Molecular Design of Isoquinolone Derivative JNK1 Inhibitors

  • Corresponding author: Jian-Bo TONG, jianbotong@aliyun.com
  • Received Date: 21 April 2021
    Accepted Date: 15 June 2021

Figures(6)

  • JNK1 is a drug target for the treatment of type 2 diabetes, and it plays a key mediator role in metabolic disorders. In this paper, holographic quantitative structure-activity relationship (HQSAR) technology and Topomer comparative molecular field analysis (Topomer CoMFA) technology are used to analyze the quantitative structure-activity relationship (QSAR) of 39 isoquinolone derivatives. The cross validation correlation coefficient (q2) is 0.696 (Topomer CoMFA) and 0.826 (HQSAR), and the non-cross validation correlation coefficient (r2) is 0.935 (Topomer CoMFA) and 0.987 (HQSAR). The results showed that the models have good stability and predictive ability. The Topomer search module was applied to define high contribution fragments in the ZINC database, designing 20 new isoquinolone compounds with theoretically high inhibitory activity. The molecular docking was carried out to explore the interaction between the ligand and target JNK1 protein. This study can provide a theoretical basis for the design of new JNK1 inhibitors.
  • 加载中
    1. [1]

      Weston, C. R.; Davis, R. J. The JNK signal transduction pathway. Curr. Opin. Genet. Dev. 2002, 12, 14−21.  doi: 10.1016/S0959-437X(01)00258-1

    2. [2]

      Barr, R. K.; Bogoyevitch, M. A. The c-Jun N-terminal protein kinase family of mitogen-activated protein kinases (JNK MAPKs). Int. J. Biochem. Cell B 2001, 33, 1047−1063.  doi: 10.1016/S1357-2725(01)00093-0

    3. [3]

      Gupta, S.; Barrett, T.; Whitmarsh, A. J.; Cavanagh, J.; Sluss, H. K.; Dérijard, B.; Davis, R. J. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 1996, 15, 2760–2770.  doi: 10.1002/j.1460-2075.1996.tb00636.x

    4. [4]

      Hirosumi, J.; Tuncman, G.; Chang, L. F.; Görgün, C. Z.; Uysal, K. T.; Maeda, K.; Karin, M.; Hotamisligil, G. S. A central role for JNK in obesity and insulin resistance. Nature 2002, 420, 333−336.  doi: 10.1038/nature01137

    5. [5]

      Bennett, B. L.; Satoh, Y.; Lewis, A. J. JNK: a new therapeutic target for diabetes. Curr. Opin. Pharmacol. 2003, 3, 420−425.  doi: 10.1016/S1471-4892(03)00068-7

    6. [6]

      Eshak, E. S.; Isao, M.; Hironori, I.; Kazumasa, Y.; Akiko, T.; Hiroyasu, I. Manganese intake from foods and beverages is associated with a reduced risk of type 2 diabetes. Maturitas 2021, 143, 127−131.  doi: 10.1016/j.maturitas.2020.10.009

    7. [7]

      Abdizadeh, R.; Hadizadeh, F.; Abdizadeh, T. QSAR analysis of coumarin-based benzamides as histone deacetylase inhibitors using CoMFA, CoMSIA and HQSAR methods. J. Mol. Struct. 2020, 1199, 126961−22.  doi: 10.1016/j.molstruc.2019.126961

    8. [8]

      More, U. A.; Patel, S.; Rahevar, V.; Noolvi, M. N.; Aminabhavi, T. M.; Joshi, S. D. In silico ADME and QSAR studies on a set of coumarin derivatives as acetylcholinesterase inhibitors against Alzheimer's disease: CoMFA, CoMSIA, Topomer CoMFA, and HQSAR. Lett. Drug Des. Discov. 2020, 17, 684−712.  doi: 10.2174/1570180816666190712095907

    9. [9]

      Wang, J. L.; Chen, W. W.; Zhong, H.; Luo, Y.; Zhang, L. L.; He, L.; Wu, C. J.; Li, L. Identify of promising isoquinolone JNK1 inhibitors by combined application of 3D-QSAR, molecular docking and molecular dynamics simulation approaches. J. Mol. Struct. 2021, 1225, 127−129.

    10. [10]

      Tong, J. B.; Luo, D.; Zhang, X.; Bian, S. Design of novel SHP2 inhibitors using Topomer CoMFA, HQSAR analysis, and molecular docking. Struct. Chem. 2021, 32, 1061–1076.  doi: 10.1007/s11224-020-01677-8

    11. [11]

      Tong, J. B.; Feng, Y.; Wang, T. H.; Wu, L. Y. Topomer CoMFA, HQSAR studies and molecular docking of 2, 5-diketopiperazine derivatives as oxytocin inhibitors. Chin. J. Struc. Chem. 2020, 39, 1385−1394.

    12. [12]

      Tong, J. B.; Luo, D.; Bian, S.; Zhang, X. Structural investigation of tetrahydropteridin analogues as selective PLK1 inhibitors for treating cancer through combined QSAR techniques, molecular docking, and molecular dynamics simulations. J. Mol. Liq. 2021, 335, 116235−17.  doi: 10.1016/j.molliq.2021.116235

    13. [13]

      Ferri, E.; Petosa, C.; Mckenna, C. E. Bromodomains: structure, function and pharmacology of inhibition. Biochem. Pharmacol. 2016, 106, 1−18.  doi: 10.1016/j.bcp.2015.12.005

    14. [14]

      Tong, J. B; Wu, L. Y.; Lei, S.; Wang, T. H.; Ma, Y. M. Molecular modeling studies of 4-Hydroxyamino α-pyranone carboxamide analogues as hepatitis C virus inhibitor using 3D-QSAR and molecular docking. Chin. J. Struc. Chem. 2020, 39, 1135−1145.

    15. [15]

      Hosseini, F. S.; Amanlou, M. Anti-HCV and anti-malaria agent, potential candidates to repurpose for coronavirus infection: virtual screening, molecular docking, and molecular dynamics simulation study. Life Sci. 2020, 258, 118205−35.  doi: 10.1016/j.lfs.2020.118205

    16. [16]

      Shrestha, R.; Fajardo, J. E.; Fiser, A. Residue-based pharmacophore approaches to study protein-protein interactions. Curr. Opin. Struc. Biol. 2021, 67, 205−211.  doi: 10.1016/j.sbi.2020.12.016

    17. [17]

      Singh, S.; Pandey, V. P.; Yadav, K.; Yadav, A.; Dwivedi, U. N. Natural products as anti-cancerous therapeutic molecules targeted towards topoisomerases. Curr. Protein Pept. Sc. 2020, 21, 1103−1142.  doi: 10.2174/1389203721666200918152511

    18. [18]

      Zhang, S. W.; Li, T.; Pang, W.; Wu, J. J.; Wu, F. L.; Liu, Y. Y.; Wu, F. H. Synthesis, biological evaluation and molecular docking studies of combretastatin A-4 phosphoramidates as novel anticancer prodrugs. Med. Chem. Res. 2020, 29, 2192–2202.  doi: 10.1007/s00044-020-02632-2

    19. [19]

      Chaikuad, A.; Tacconi, E. M. C.; Zimmer, J.; Liang, Y. K.; Gray, N. S.; Tarsounas, M.; Knapp, S. A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics. Nat. Chem. Biol. 2014, 10, 853–860.  doi: 10.1038/nchembio.1629

    20. [20]

      Paweł, Ś.; Amedeo, C. Protein structure-based drug design: from docking to molecular dynamics. Curr. Opin. Struc. Biol. 2018, 48, 93–102.  doi: 10.1016/j.sbi.2017.10.010

    21. [21]

      Tong, J. B.; Lei, S.; Qin, S. S.; Wang, Y. QSAR studies of TIBO derivatives as HIV-1 reverse transcriptase inhibitors using HQSAR, CoMFA and CoMSIA. J. Mol. Struct. 2018, 1168, 56–64.  doi: 10.1016/j.molstruc.2018.05.005

    22. [22]

      Tong, J. B.; Wang, T. H.; Wu, Y. J.; Feng, Y. QSAR and Docking Studies of thiazolidine-4-carboxylic acid derivatives as neuraminidase inhibitors. Chin. J. Struc. Chem. 2020, 39, 651–661.

    23. [23]

      Luo, D.; Tong, J. B.; Zhang, X.; Xiao, X. C.; Bian, S. Computational strategies towards developing novel SARS-CoV-2 Mpro inhibitors against COVID-19. J. Mol. Struct. 2022, 1247, 131378–18.  doi: 10.1016/j.molstruc.2021.131378

    24. [24]

      Balaramnavar, V. M.; Srivastava, R.; Varshney, S.; Rawat, A. K.; Chandasana, H.; Chhonker, Y. S.; Bhatta, R. S.; Srivastava, A. K.; Gaikwad, A. N.; Lakshmi, V.; Saxena, A. K. Synthesis, biological evaluation, and molecular docking study of some new rohitukine analogs as protein tyrosine phosphatase 1B inhibitors. Bioorg. Chem. 2021, 110, 104829–11.  doi: 10.1016/j.bioorg.2021.104829

  • 加载中
    1. [1]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    2. [2]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    3. [3]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    4. [4]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    5. [5]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    6. [6]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    7. [7]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    8. [8]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    9. [9]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    10. [10]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    11. [11]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    12. [12]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    13. [13]

      Kai YeZhicheng YeChuantao WangZhilai LuoCheng LianChunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033

    14. [14]

      Man Wu Chuandong Jia . A light-powered molecular pump achieving transmembrane concentration gradient. Chinese Journal of Structural Chemistry, 2025, 44(4): 100452-100452. doi: 10.1016/j.cjsc.2024.100452

    15. [15]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    16. [16]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    17. [17]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

    18. [18]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    19. [19]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    20. [20]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

Metrics
  • PDF Downloads(1)
  • Abstract views(364)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return