Citation: Song-Xia WANG, Sa-Sa WANG, Xiao-Yuan WU, Wen-Bin YANG, Can-Zhong LU. Two Polyoxometalate-based Host-guest Compounds: Synthesis, Crystal Structure and Catalytic Performance[J]. Chinese Journal of Structural Chemistry, ;2021, 40(12): 1655-1660. doi: 10.14102/j.cnki.0254-5861.2011-3226 shu

Two Polyoxometalate-based Host-guest Compounds: Synthesis, Crystal Structure and Catalytic Performance

  • Corresponding author: Can-Zhong LU, czlu@fjirsm.ac.cn
  • Received Date: 19 April 2021
    Accepted Date: 11 June 2021

    Fund Project: the Key Research Program of Frontier Science, CAS QYZDJ-SSW-SLH033the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000the National Natural Science Foundation of China 21773247the National Natural Science Foundation of China 21521061the National Natural Science Foundation of China 21875252the National Natural Science Foundation of China 52073286

Figures(4)

  • Two polyoxometalate-based host-guest compounds, (HL1)2(HPW12O40)·~11H2O (1), (HL2)3(PW12O40)·3H2O (2) (L1 = guanine, L2 = 2-(1H-1, 2, 4-triazol-3-yl)pyridine), were synthesized under hydrothermal conditions and characterized by EA, PXRD, TG, FT-IR and X-ray single-crystal diffraction. Compound 1 crystallizes in trigonal space group P-3 with a = 18.2917(5), b = 18.2917(5), c = 13.5441(5) Å, V = 3924.5(3) Å3, Z = 3, Mr = 3383.26 g/mol, ρcalc = 4.036 g/cm3, F(000) = 4137, μ = 48.532 mm–1, GOOF = 1.062, the final R = 0.0713 and wR = 0.1865 for 9037 observed reflections with I > 2σ(I). Compound 2 crystallizes in trigonal space group R-3 with a = 19.0017(6), b = 19.0017(6), c = 25.6361(9) Å, V = 8016.2(6) Å3, Z = 6, Mr = 3372.45 g/mol, ρcalc = 4.188 g/cm, F(000) = 8886, μ = 47.644 mm–1, GOOF = 1.077, the final R = 0.0380 and wR = 0.0976 for 5904 observed reflections with I > 2σ(I). These two compounds can catalyze selective oxidation of aniline with H2O2 as the oxidant. Under optimal conditions, the conversion of aniline with compound 1 can reach up to 91.25%, and the selectivity of nitrosobenzene is 78.81%.
  • 加载中
    1. [1]

      Li, T. F.; Miras, H. N.; Song, Y. F. Polyoxometalate (POM)-layered double hydroxides (LDH) composite materials: design and catalytic applications. Catalysts 2017, 7, 260.  doi: 10.3390/catal7090260

    2. [2]

      Pope, M. T.; Müller, A. Polyoxometalate Chemistry: from Topology via Self-assembly to Applications 2001.

    3. [3]

      Mizuno, N.; Yamaguchi, K.; Kamata, K. Epoxidation of olefins with hydrogen peroxide catalyzed by polyoxometalates. Coordin. Chem. Rev. 2004, 249, 1944–1956.

    4. [4]

      Miras, H. N.; Yan, J.; Long, D. L.; Cronin, L. Engineering polyoxometalates with emergent properties. Chem. Soc. Rev. 2012, 41, 7403–7430.  doi: 10.1039/c2cs35190k

    5. [5]

      Barteau, M. A.; Lyons, J. E.; Song, I. K. Surface chemistry and catalysis on well-defined oxide surfaces: nanoscale design bases for single-site heterogeneous catalysts. J. Catal. 2003, 216, 236–245.  doi: 10.1016/S0021-9517(02)00114-8

    6. [6]

      Deshlahra, P.; Carr, R. T.; Chai, S. H.; Iglesia, E. Mechanistic details and reactivity descriptors in oxidation and acid catalysis of methanol. ACS Catal. 2015, 5, 666–682.  doi: 10.1021/cs501599y

    7. [7]

      Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.  doi: 10.1021/cr500390v

    8. [8]

      Kumar, A.; Gupta, A. K.; Devi, M.; Gonsalves, K. E.; Pradeep, C. P. Engineering multifunctionality in hybrid polyoxometalates: aromatic sulfonium octamolybdates as excellent photochromic materials and self-separating catalysts for epoxidation. Inorg. Chem. 2017, 56, 10325–10336.  doi: 10.1021/acs.inorgchem.7b01143

    9. [9]

      Wilke, T.; Barteau, M. A. Dehydration and oxidation of alcohols by supported polyoxometalates: effects of mono- and multivalent cation exchange on catalyst acidity and activity. Ind. Eng. Chem. Res. 2019, 58, 14752–14760.  doi: 10.1021/acs.iecr.9b03084

    10. [10]

      Wilke, T.; Barteau, M. A. Cation exchange effects on methanol oxidation and dehydration by supported polyoxometalates. J. Catal. 2019, 371, 357–367.  doi: 10.1016/j.jcat.2019.02.006

    11. [11]

      Uchida, S. Frontiers and progress in cation-uptake and exchange chemistry of polyoxometalate-based compounds. Chem. Sci. 2019, 10, 7670–7679.  doi: 10.1039/C9SC02823D

    12. [12]

      Derouich, S. G.; Rinfray, C.; Izzet, G.; Pinson, J.; Gallet, J. J.; Kanoufi, F.; Proust, A.; Combellas, C. Control of the grafting of hybrid polyoxometalates on metal and carbon surfaces: toward submonolayers. Langmuir. 2014, 30, 2287–2296.  doi: 10.1021/la500067e

    13. [13]

      Zhang, M.; Li, H. J.; Zhang, J. H.; Lv, H. J.; Yang, G. Y. Research advances of light-driven hydrogen evolution using polyoxometalate-based catalysts. Chin. J. Catal. 2021, 42, 855–871.  doi: 10.1016/S1872-2067(20)63714-7

    14. [14]

      Gong, Y.; Hu, C. W.; Liang, H. Research progress in synthesis and catalysis of polyoxometalates. Prog. Nat. Sci-Mater. 2005, 15, 385–394.  doi: 10.1080/10020070512331342280

    15. [15]

      Liu, P.; Wang, C. H.; Li, C. Epoxidation of allylic alcohols on self-assembled polyoxometalates hosted in layered double hydroxides with aqueous H2O2 as oxidant. J. Catal. 2009, 262, 159–168.  doi: 10.1016/j.jcat.2008.12.018

    16. [16]

      Li, J.; Huang, Y.; Han, Q. X. Decatungstate incorporated metal-organic framework for degradation of Rhodamine B under sunlight irradiation. Chin. J. Struct. Chem. 2013, 32, 1897–1903.

    17. [17]

      Sakaue, S.; Sakata, Y.; Nishiyama, Y.; Ishii, Y. Oxidation of aliphatic and aromatic amines with hydrogen peroxide catalyzed by peroxoheteropoly oxometalates. Chem. Lett. 1992, 21, 289–292.  doi: 10.1246/cl.1992.289

    18. [18]

      Tang, G. Q.; Sun, J.; Wu, F. K.; Sun, Y.; Zhu, X. W.; Geng, Y. J.; Wang, Y. S. Organic composition of gasoline and its potential effects on air pollution in North China. Sci. China Chem. 2015, 58, 1416-1425.  doi: 10.1007/s11426-015-5464-0

    19. [19]

      Trautwein, G.; El Bakkali, B.; Alcaniz-Monge, J.; Artetxe, B.; Reinoso, S.; Gutierrez-Zorrilla, J. M. Dimeric assemblies of lanthanide-stabilised dilacunary Keggin tungstogermanates: a new class of catalysts for the selective oxidation of aniline. J. Catal. 2015, 331, 110–117.  doi: 10.1016/j.jcat.2015.09.004

    20. [20]

      Gowenlock, B. G.; Richter-Addo, G. B. Preparations of C-nitroso compounds. Chem. Rev. 2004, 104, 3315–3340.

    21. [21]

      Rao, G. R.; Rajkumar, T. Investigation of 12-tungstophosphoric acid supported on Ce0.5Zr0.5O2 solid solution. Catal. Lett. 2008, 120, 261–273.  doi: 10.1007/s10562-007-9279-2

    22. [22]

      Oza, M. D.; Meena, R.; Prasad, K.; Paul, P.; Siddhanta, A. K. Functional modification of agarose: a facile synthesis of a fluorescent agarose-guanine derivative. Carbohyd. Polym. 2010, 81, 878–884.  doi: 10.1016/j.carbpol.2010.03.062

    23. [23]

      Ma, W. D.; Li, H. L.; Yang, G. Y. A new 3-D supramolecular framework built by Co4-substituted sandwiched phosphortungstates, organoamines and Co-complexes: synthesis, structure, and property. Chin. J. Struct. Chem. 2019, 38, 1585–1592.

  • 加载中
    1. [1]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    2. [2]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    3. [3]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    4. [4]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    5. [5]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    6. [6]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    7. [7]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    8. [8]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    9. [9]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    10. [10]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    11. [11]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    12. [12]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    13. [13]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    14. [14]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    15. [15]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    16. [16]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    17. [17]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    18. [18]

      Shuaiwen LiZihui ChenFeng YangWanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793

    19. [19]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    20. [20]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

Metrics
  • PDF Downloads(2)
  • Abstract views(194)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return