Citation: Yu-Xing TAN, Xiao-Long NAN, Yan-Liang TAN, Zhi-Jian ZHANG, Wu-Jiu JIANG. Self-assembly Syntheses, Crystal Structures and Quantum Chemistry of Two UO22+ Complexes[J]. Chinese Journal of Structural Chemistry, ;2021, 40(12): 1673-1679. doi: 10.14102/j.cnki.0254-5861.2011-3223 shu

Self-assembly Syntheses, Crystal Structures and Quantum Chemistry of Two UO22+ Complexes

  • Corresponding author: Yu-Xing TAN, tanyuxing@hynu.edu.cn
  • Received Date: 19 April 2021
    Accepted Date: 24 June 2021

    Fund Project: the Foundation of Hunan Provincial Engineering Research Center for Uranium Exploration Technology YK20K03

Figures(6)

  • Two UO22+ complexes {[C5H4N(O)C=N-N=C(Ph)-(Ph)C=N-N=C(O)-C5H4N]2UO2(CH3OH)} () and {[C5H4N(O)C=N-N=C(Ph)-(Ph)C=N-N=C(O)-C5H4N]2UO2(C5H4N(O)C=N-NH2)} () were synthesized and characterized by IR, elemental analysis and thermal stability analysis, and the crystal structures were determined by X-ray diffraction. The crystal of complex belongs to monoclinic system, space group P21/n with a = 11.7678(4), b = 16.9667(6), c = 14.3051(5) Å, β = 98.918(3)°, Z = 4, V = 2821.64(17) Å3, Dc = 1.837 Mg·m–3, μ(Mo) = 5.805 mm–1, F(000) = 1504, R = 0.0346 and wR = 0.0688. The crystal of complex is of triclinic system, space group P\begin{document}$ \overline 1 $\end{document} with a = 11.6417(5), b = 11.7297(5), c = 14.2197(5) Å, α = 71.697(4)°, β = 86.020(3)°, γ = 71.572(4)°, Z = 2, V = 1748.02(12) Å3, Dc = 1.742 Mg·m–3, μ(Mo) = 4.704 mm–1, F(000) = 894, R = 0.0283 and wR = 0.0537. The U1 is a seven-coordinate pentagonal bipyramidal configuration in and an eight-coordinate hexagonal dipyramidal configuration in . The thermal stability and quantum chemical calculations of and were also investigated.
  • 加载中
    1. [1]

      Settle, F. A. Uranium to electricity: the chemistry of the nuclear fuel cycle. J. Chem. Edu. 2009, 86, 316–323.  doi: 10.1021/ed086p316

    2. [2]

      Gates, S. D.; Cassata, W. S. Application of the uranium-helium chronometer to the analysis of nuclear forensic materials. Anal. Chem. 2016, 88, 12310–12315.  doi: 10.1021/acs.analchem.6b03502

    3. [3]

      Alley, W. M.; Alley, R. The growing problem of stranded used nuclear fuel. Environ. Sci. Technol. 2014, 48, 2091–2096.  doi: 10.1021/es405114h

    4. [4]

      Pastoor, K. J.; Kemp, R. S.; Jensen, M. P.; Shafer, J. C. Progress in uranium chemistry: driving advances in front-end nuclear fuel cycle forensics. Inorg. Chem. 2021, DOI: 10.1021/acs.inorgchem.0c03390

    5. [5]

      Todd, T. A. Separations research for advanced nuclear fuel cycles. Nuclear energy and the environment. American Chemical Society 2010, 13–18.

    6. [6]

      McSkimming, A.; Su, J.; Cheisson, T.; Gau, M. R.; Carroll, P. J.; Batista, E. R.; Yang, P.; Schelter, E. J. Coordination chemistry of a strongly-donating hydroxylamine with early actinides: an investigation of redox properties and electronic structure. Inorg. Chem. 2018, 57, 4387–4394.  doi: 10.1021/acs.inorgchem.7b03238

    7. [7]

      Yao, J.; Zheng, X. J.; Pan, Q. J.; Schreckenbach, G. Highly valence-diversified binuclear uranium complexes of a Schiff-base polypyrrolic macrocycle: prediction of unusual structures, electronic properties, and formation reactions. Inorg. Chem. 2015, 54, 5438–5449.  doi: 10.1021/acs.inorgchem.5b00483

    8. [8]

      Marchenko, A.; Truflandier, L. A.; Autschbach, J. Uranyl carbonate complexes in aqueous solution and their ligand NMR chemical shifts and 17O quadrupolar relaxation studied by ab initio molecular dynamics. Inorg. Chem. 2017, 56, 7384–7396.  doi: 10.1021/acs.inorgchem.7b00396

    9. [9]

      Drouza, C.; Gramlich, V.; Sigalas, M. P.; Pashalidis, I.; Keramidas, A. D. Synthesis, structure, and solution dynamics of UO22+-hydroxy ketone compounds [UO2(ma)2(H2O)] and [UO2(dpp)(Hdpp)2(H2O)]ClO4 (ma = 3-Hydroxy-2-methyl-4-pyrone, Hdpp = 3-hydroxy-1, 2-dimethyl-4(1H)-pyridone). Inorg. Chem. 2004, 43, 8336–8345.  doi: 10.1021/ic049167+

    10. [10]

      Sheldrick, G. M. SHELXL-97, A Program for Crystal Structure Refinement. Germany Geöttingen: University of Geöttingen 1997.

    11. [11]

      Yang, J.; Quan, Z.; Kong, D.; Liu, X.; Lin, J. Y2O3:  Eu3+ microspheres:  solvothermal synthesis and luminescence properties. Cryst. Growth Des. 2007, 7, 730–735.  doi: 10.1021/cg060717j

    12. [12]

      Choi, J.; Gillan, E. G. Solvothermal synthesis of nanocrystalline copper nitride from an energetically unstable copper azide precursor. Inorg. Chem. 2005, 44, 7385–7393.  doi: 10.1021/ic050497j

    13. [13]

      Huang, W.; Jiang, Y.; Li, X.; Li, X.; Wang, J.; Wu, Q.; Liu, X. Solvothermal synthesis of microporous, crystalline covalent organic framework nanofibers and their colorimetric nanohybrid structures. Acs Appl. Mater. Inter. 2013, 5, 8845–8849.  doi: 10.1021/am402649g

    14. [14]

      Wang, C. Synthesis, structural analysis and adsorption properties of the uranyl complex. Chem. Reagent. 2019, 41, 431–436.

    15. [15]

      Ge, R.; Wu, S.; Zeng, L. W.; Li, F. Z.; Mei, L.; Liu, C. L. Synthesis, structure and physico-chemical properties of two uranyl complexes of cucurbiturils mediated by sulfate ions. Sci. Sin. Chim. 2019, 49, 1073–1082.  doi: 10.1360/SSC-2019-0015

    16. [16]

      Mackinnon, P. I.; Taylor, J. C. The crystal and molecular structure of dioxo bis(2, 2, 6, 6-tetramethylheptane-3, 5-dionato)methanol uranium (VI). Polyhedron 1983, 2, 217–224.

    17. [17]

      Day, V. W.; Marks, T. J.; Wachter, W. A. Large metal ion-centered template reactions. Uranyl complex of cyclopentakis(2-iminoisoindoline). J. Am. Chem. Soc. 1975, 97, 4519–4527.  doi: 10.1021/ja00849a012

    18. [18]

      de Almeida, K. C. S.; Martins, T. S.; Isolani, P. C.; Vicentini, G.; Zukerman-Schpector, J. Uranyl nitrate complexes with diphenylsulfoxide and dibenzylsulfoxide: characterization, luminescence and structures. J. Solid State Chem. 2003, 171, 230–234.

    19. [19]

      Gatto, C. C.; Schulz Lang, E.; Kupfer, A.; Hagenbach, A.; Wille, D.; Abram, U. Dioxouranium complexes with acetylpyridine benzoylhydrazones and related ligands. Z. Anorg. Allg. Chem. 2004, 630, 735–741.

    20. [20]

      Jiang, W.; Yang, J.; Yan, G.; Zhou, S.; Liu, B.; Qiao, Y.; Zhou, T.; Wang, J.; Che, G. A novel 3-fold interpenetrated dia metal-organic framework as a heterogeneous catalyst for CO2 cycloaddition. Inorg. Chem. Commun. 2020, 113, 107770.

    21. [21]

      Ren, S.; Jiang, W.; Wang, Q.; Li, Z.; Qiao, Y.; Che, G. Synthesis, structures and properties of six lanthanide complexes based on a 2-(2-carboxyphenyl)imidazo(4, 5-f)-(1, 10)phenanthroline ligand. RSC Adv. 2019, 9, 3102–3112.

  • 加载中
    1. [1]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    2. [2]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    3. [3]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    4. [4]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    5. [5]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    6. [6]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    15. [15]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    16. [16]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    17. [17]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(1)
  • Abstract views(172)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return