Citation: Bao-Ying WEN, Tai-Long SHEN, Yuan-Fei WU, Jian-Feng LI. A New SERS Method Based on Shell-isolated Nanoparticles for Rapidly Quantitative Determination of Hydrogen Peroxide[J]. Chinese Journal of Structural Chemistry, ;2021, 40(12): 1604-1610. doi: 10.14102/j.cnki.0254-5861.2011-3210 shu

A New SERS Method Based on Shell-isolated Nanoparticles for Rapidly Quantitative Determination of Hydrogen Peroxide

  • Corresponding author: Jian-Feng LI, li@xmu.edu.cn
  • ② Wen Bao-Ying and Shen Tai-Long contributed equally to this work
  • Received Date: 7 April 2021
    Accepted Date: 17 May 2021

    Fund Project: the National Natural Science Foundation of China 21925404the Science and Technology Planning Project of Fujian Province 2019Y4001

Figures(5)

  • Hydrogen peroxide (H2O2) is an important chemical substance produced in the metabolic process of organisms. Excess or less production could lead to serious effects on the body. Therefore, the development of advanced technology to accurately detect the content of H2O2 is of great significance. Herein, we developed a new ratiometric SERS nanoprobe based on shell-isolated nanoparticles (SHINs) for rapidly quantitative detection of H2O2. Because of the small Raman cross-section of H2O2, the ratiometric nanoprobe is an effective method for indirect detection of H2O2, which is designed based on the reaction of p-mercaptophenylboric acid (MPB) with H2O2 to form p-mercaptophenol (MP). Meanwhile, the nanoprobe was used to achieve quantitative detection of H2O2 and applied in quantitative detection of actual sample⎯glucose, whose linear correlation coefficient could reach 0.9947 and 0.9812, respectively. This method expands the application of SERS technology, especially provides a reference for the detection of molecules with small Raman cross-section.
  • 加载中
    1. [1]

      Rhee, S. G. H2O2, a necessary evil for cell signaling. Science 2006, 312, 1882−1883.  doi: 10.1126/science.1130481

    2. [2]

      Winterbourn, C. C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008, 4, 278−286.  doi: 10.1038/nchembio.85

    3. [3]

      Burmistrova, N. A.; Meier, R. J.; Schreml, S.; Duerkop, A. Reusable optical sensing microplate for hydrogen peroxide using a fluorescent photoinduced electron transfer probe (HP Green). Sensor. Actuat. B: Chem. 2014, 193, 799−805.  doi: 10.1016/j.snb.2013.12.025

    4. [4]

      Murphy, M. P.; Holmgren, A.; Larsson, N. G.; Halliwell, B.; Chang, C. J.; Kalyanaraman, B.; Rhee, S. G.; Thornalley, P. J.; Partridge, L.; Gems, D.; Nyström, T.; Belousov, V.; Schumacker, P. T.; Winterbourn, C. C. Unraveling the biological roles of reactive oxygen species. Cell Metab. 2011, 13, 361−366.  doi: 10.1016/j.cmet.2011.03.010

    5. [5]

      Duan, X. B.; Berthiaume, F.; Yarmush, D.; Yarmush, M. L. Proteomic analysis of altered protein expression in skeletal muscle of rats in a hypermetabolic state induced by burn sepsis. Biochem. J. 2006, 397, 149−158.  doi: 10.1042/BJ20051710

    6. [6]

      Finkel, T.; Serrano, M.; Blasco, M. A. The common biology of cancer and ageing. Nature 2007, 448, 767−774.  doi: 10.1038/nature05985

    7. [7]

      Stone, J. R.; Yang, S. Hydrogen peroxide: a signaling messenger. Antioxid. Redox Sign. 2006, 8, 243−270.  doi: 10.1089/ars.2006.8.243

    8. [8]

      Barnham, K. J.; Masters, C. L.; Bush, A. I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004, 3, 205−214.  doi: 10.1038/nrd1330

    9. [9]

      Kafi, A. K. M.; Wu, G.; Chen, A. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens. Bioelectron. 2008, 24, 566−571.  doi: 10.1016/j.bios.2008.06.004

    10. [10]

      Chen, S.; Hai, X.; Chen, X. W.; Wang, J. H. In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Anal. Chem. 2014, 86, 6689−6694.  doi: 10.1021/ac501497d

    11. [11]

      Lippert, A. R.; Van de Bittner, G. C.; Chang, C. J. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc. Chem. Res. 2011, 44, 793−804.  doi: 10.1021/ar200126t

    12. [12]

      Xu, K.; Qiang, M.; Gao, W.; Su, R.; Li, N.; Gao, Y.; Xie, Y.; Kong, F.; Tang, B. A near-infrared reversible fluorescent probe for real-time imaging of redox status changes in vivo. Chem. Sci. 2013, 4, 1079−1086.  doi: 10.1039/c2sc22076h

    13. [13]

      Hou, S. S.; Xu, Z. T.; Zhang, Y. K.; Xie, G.; Gan, L. Z. Enhanced CO2 electrolysis with Mn-doped SrFeO3-δ cathode. Chin. J. Struct. Chem. 2020, 39, 119−125.

    14. [14]

      Song, M. J.; Zhang, L. Z.; Wang, G. F. Growth and spectroscopic investigations of disordered Nd3+: Li3Ba2La3(MoO4)8 crystal. Chin. J. Struct. Chem. 2013, 5, 730−738.

    15. [15]

      Zhu, M.; Lu, G. F.; Zhu, Y.; Lu, A. X.; Ou, Z. P. Synthesis, crystal structure and electrochemical property of 5, 10, 15, 20-tetrakis(4-chlorophenyl)porphyrin. Chin. J. Struct. Chem. 2012, 7, 921−924.

    16. [16]

      Wang, J. G.; Lin, W.; Zhong, C. J.; Qi, X. Y.; Zhou, J. X.; Yi, D. L. Synthesis and crystal structure of (E)-ethyl 2-(5-(3-methyl-2-butenyloxy)-2-(3-(4-(3-methyl-2-butenyloxy)phenyl)acryloyl)phenoxy)acetate. Chin. J. Struct. Chem. 2011, 30, 604−608.

    17. [17]

      Rivera_Gil, P.; Vazquez-Vazquez, C.; Giannini, V.; Callao, M. P.; Parak, W. J.; Correa-Duarte, M. A.; Alvarez-Puebla, R. A. Plasmonic nanoprobes for real-time optical monitoring of nitric oxide inside living cells. Angew. Chem. Int. Ed. 2013, 125, 13939−13943.  doi: 10.1002/ange.201306390

    18. [18]

      Li, D. W.; Qu, L. L.; Hu, K.; Long, Y. T.; Tian, H. Monitoring of endogenous hydrogen sulfide in living cells using surface-enhanced Raman scattering. Angew. Chem. Int. Ed. 2015, 54, 12758−12761.  doi: 10.1002/anie.201505025

    19. [19]

      Huang, X.; Song, J.; Yung, B. C.; Huang, X.; Xiong, Y.; Chen, X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 2018, 47, 2873−2920.  doi: 10.1039/C7CS00612H

    20. [20]

      Xu, Q.; Liu, W.; Li, L.; Zhou, F.; Zhou, J.; Tian, Y. Ratiometric SERS imaging and selective biosensing of nitric oxide in live cells based on trisoctahedral gold nanostructures. Chem. Commun. 2017, 53, 1880−1883.  doi: 10.1039/C6CC09563A

    21. [21]

      Hanif, S.; Liu, H.; Chen, M.; Muhammad, P.; Zhou, Y.; Cao, J.; Ahmed, S. A.; Xu, J.; Xia, X.; Chen, H.; Wang, K. Organic cyanide decorated sers active nanopipettes for quantitative detection of hemeproteins and Fe3+ in single cells. Anal. Chem. 2017, 89, 2522−2530.  doi: 10.1021/acs.analchem.6b04689

    22. [22]

      Wang, W.; Zhang, L.; Li, L.; Tian, Y. A single nanoprobe for ratiometric imaging and biosensing of hypochlorite and glutathione in live cells using surface-enhanced Raman scattering. Anal. Chem. 2016, 88, 9518−9523.  doi: 10.1021/acs.analchem.6b02081

    23. [23]

      Ma, D.; Zheng, J.; Tang, P.; Xu, W.; Qing, Z.; Yang, S.; Li, J.; Yang, R. Quantitative monitoring of hypoxia-induced intracellular acidification in lung tumor cells and tissues using activatable surface-enhanced Raman scattering nanoprobes. Anal. Chem. 2016, 88, 11852−11859.  doi: 10.1021/acs.analchem.6b03590

    24. [24]

      Cui, J.; Hu, K.; Sun, J. J.; Qu, L. L.; Li, D. W. SERS nanoprobes for the monitoring of endogenous nitric oxide in living cells. Biosens. Bioelectron. 2016, 85, 324−330.  doi: 10.1016/j.bios.2016.04.094

    25. [25]

      Chen, P.; Wang, Z.; Zong, S.; Zhu, D.; Chen, H.; Zhang, Y.; Wu, L.; Cui, Y. pH-sensitive nanocarrier based on gold/silver core-shell nanoparticles decorated multi-walled carbon manotubes for tracing drug release in living cells. Biosens. Bioelectron. 2016, 75, 446−451.  doi: 10.1016/j.bios.2015.09.002

    26. [26]

      Tian, L.; Tadepalli, S.; Fei, M.; Morrissey, J. J.; Kharasch, E. D.; Singamaneni, S. Off-resonant gold superstructures as ultrabright minimally invasive surface-enhanced Raman scattering (SERS) probes. Chem. Mater. 2015, 27, 5678−5684.  doi: 10.1021/acs.chemmater.5b02100

    27. [27]

      Cao, Y.; Li, D. W.; Zhao, L. J.; Liu, X. Y.; Cao, X. M.; Long, Y. T. Highly selective detection of carbon monoxide in living cells by palladacycle carbonylation-based surface enhanced Raman spectroscopy nanosensors. Anal. Chem. 2015, 87, 9696−9701.  doi: 10.1021/acs.analchem.5b01793

    28. [28]

      Zhang, K.; Wang, Y.; Wu, M.; Liu, Y.; Shi, D.; Liu, B. On-demand quantitative SERS bioassays facilitated by surface-tethered ratiometric probes. Chem. Sci. 2018, 9, 8089−8093.  doi: 10.1039/C8SC03263G

    29. [29]

      Qu, L. L.; Liu, Y. Y.; He, S. H.; Chen, J. Q.; Liang, Y.; Li, H. T. Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cells. Biosens. Bioelectron. 2016, 77, 292−298.  doi: 10.1016/j.bios.2015.09.039

    30. [30]

      Peng, R.; Si, Y.; Deng, T.; Zheng, J.; Li, J.; Yang, R.; Tan, W. A novel SERS nanoprobe for the ratiometric imaging of hydrogen peroxide in living cells. Chem. Commun. 2016, 52, 8553−8556.  doi: 10.1039/C6CC03412H

    31. [31]

      Gu, X.; Wang, H.; Schultz, Z. D.; Camden, J. P. Sensing glucose in urine and serum and hydrogen peroxide in living cells by use of a novel boronate nanoprobe based on surface-enhanced Raman spectroscopy. Anal. Chem. 2016, 88, 7191−7197.  doi: 10.1021/acs.analchem.6b01378

    32. [32]

      Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20−22.  doi: 10.1038/physci241020a0

    33. [33]

      Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392−395.  doi: 10.1038/nature08907

    34. [34]

      Li, J. F.; Tian, X. D.; Li, S. B.; Anema, J. R.; Yang, Z. L.; Ding, Y.; Wu, Y. F.; Zeng, Y. M.; Chen, Q. Z.; Ren, B.; Wang, Z. L.; Tian, Z. Q. Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat. Protoc. 2012, 8, 52−65.

    35. [35]

      Sun, D.; Qi, G.; Xu, S.; Xu, W. Construction of highly sensitive surface-enhanced Raman scattering (SERS) nanosensor aimed for the testing of glucose in urine. RSC Adv. 2016, 6, 53800−53803.  doi: 10.1039/C6RA06223G

    36. [36]

      Sooraj, K. P.; Ranjan, M.; Rao, R.; Mukherjee, S. SERS based detection of glucose with lower concentration than blood glucose level using plasmonic nanoparticle arrays. Appl. Surf. Sci. 2018, 447, 576−5  doi: 10.1016/j.apsusc.2018.04.020

  • 加载中
    1. [1]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    2. [2]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    3. [3]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    4. [4]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    5. [5]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    6. [6]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    7. [7]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    8. [8]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    9. [9]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    10. [10]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    11. [11]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    12. [12]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    13. [13]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    14. [14]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    15. [15]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    16. [16]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    17. [17]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    18. [18]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    19. [19]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    20. [20]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

Metrics
  • PDF Downloads(1)
  • Abstract views(197)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return