Citation: Hao GU, Shan-Ci CHEN, Qing-Dong ZHENG. Long-term Stable 2D Dion-Jacobson Phase Perovskite Photodiode with Low Dark Current and High On/off Ratio[J]. Chinese Journal of Structural Chemistry, ;2021, 40(12): 1621-1630. doi: 10.14102/j.cnki.0254-5861.2011-3200 shu

Long-term Stable 2D Dion-Jacobson Phase Perovskite Photodiode with Low Dark Current and High On/off Ratio

  • Corresponding author: Shan-Ci CHEN,  Qing-Dong ZHENG, 
  • Received Date: 31 March 2021
    Accepted Date: 26 May 2021

    Fund Project: the National Natural Science Foundation of China U1605241the Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China 2021ZR116the Natural Science Foundation of Fujian Province for Distinguished Young Scholars 2019J06023

Figures(7)

  • A two-dimensional (2D) organic-inorganic hybrid perovskite (OIHP) material is considered as a promising candidate for a long-term stable photodetector owing to its outstanding phase and environmental stability. Herein, we demonstrate a perovskite photodiode based on the DJ phase 2D perovskite (PDA)(MA)n-1PbnI3n+1 (where PDA is 1, 3-propylenediamine, MA is methylamine, nominal n = 4). The best-performance device exhibits a high detectivity of 4.57 × 1011 Jones, a responsivity of 0.25 A⋅W−1 at 480 nm, a low dark current density of 9.60 × 10−4 mA⋅cm−2, and a remarkable on/off ratio of 3.10 × 105. The unencapsulated device can maintain 95% of the initial photocurrent density after 90 days under an ambient atmosphere with relative humidity (RH) of 65%, demonstrating its improved stability than the 3D counterpart. The excellent stability of the photodiode based on 2D perovskite promises its bright commercial application future.
  • 加载中
    1. [1]

      Konstantatos, G.; Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotechnol. 2010, 5, 391−400.  doi: 10.1038/nnano.2010.78

    2. [2]

      Xue, J.; Zhu, Z.; Xu, X.; Gu, Y.; Wang, S.; Xu, L.; Zou, Y.; Song, J.; Zeng, H.; Chen, Q. Narrowband perovskite photodetector-based image array for potential application in artificial vision. Nano Lett. 2018, 18, 7628−7634.  doi: 10.1021/acs.nanolett.8b03209

    3. [3]

      Cen, G.; Liu, Y.; Zhao, C.; Wang, G.; Fu, Y.; Yan, G.; Yuan, Y.; Su, C.; Zhao, Z.; Mai, W. Atomic-layer deposition-assisted double-side interfacial engineering for high-performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications. Small 2019, 15, 1902135−9.  doi: 10.1002/smll.201902135

    4. [4]

      Zhang, Z. X.; Li, C.; Lu, Y.; Tong, X. W.; Liang, F. X.; Zhao, X. Y.; Wu, D.; Xie, C.; Luo, L. B. Sensitive deep ultraviolet photodetector and image sensor composed of inorganic lead-free Cs3Cu2I5 perovskite with wide bandgap. J. Phys. Chem. Lett. 2019, 10, 5343−5350.  doi: 10.1021/acs.jpclett.9b02390

    5. [5]

      Shan, G.; Li, X.; Huang, W. AI-enabled wearable and flexible electronics for assessing full personal exposures. The Innovation 2020, 1, 100031−2.

    6. [6]

      Jalali, B.; Fathpour, S. Silicon photonics. J. Lightwave Technol. 2006, 24, 4600−4615.  doi: 10.1109/JLT.2006.885782

    7. [7]

      Michel, J.; Liu, J.; Kimerling, L. C. High-performance Ge-on-Si photodetectors. Nat. Photonics 2010, 4, 527−534.  doi: 10.1038/nphoton.2010.157

    8. [8]

      Kang, K.; Xie, S.; Huang, L.; Han, Y.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656−660.  doi: 10.1038/nature14417

    9. [9]

      Xu, K.; Xiao, X.; Zhou, W.; Jiang, X.; Wei, Q.; Chen, H.; Deng, Z.; Huang, J.; Chen, B.; Ning, Z. Inverted Si: PbS colloidal quantum dot heterojunction-based infrared photodetector. ACS Appl. Mater. Interfaces 2020, 12, 15414−15421.  doi: 10.1021/acsami.0c01744

    10. [10]

      Liu, N.; Huang, C. Y.; Zhu, L.; Chen, Y.; Xu, G. W.; Chu, L.; Ma, X. G. Organic cation effect on the physical properties of CH3NH3PbI3 perovskite from the first-principles study. Chin. J. Struct. Chem. 2016, 35, 1297−1305.

    11. [11]

      Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476−480.  doi: 10.1038/nature14133

    12. [12]

      Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764−1769.  doi: 10.1021/nl400349b

    13. [13]

      Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967−970.  doi: 10.1126/science.aaa5760

    14. [14]

      Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687−692.  doi: 10.1038/nnano.2014.149

    15. [15]

      Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 2013, 1, 5628−5641.  doi: 10.1039/c3ta10518k

    16. [16]

      Dou, L.; Yang, Y.; You, J.; Hong, Z.; Chang, W. H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Comnun. 2014, 5, 5404−6.  doi: 10.1038/ncomms6404

    17. [17]

      Stranks, S. D.; Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015, 10, 391−402.  doi: 10.1038/nnano.2015.90

    18. [18]

      Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; García de Arquer, F. P.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y.; Fan, F.; Li, P.; Quan, L. N.; Zhao, Y.; Lu, Z. H.; Yang, Z.; Hoogland, S.; Sargent, E. H. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355, 722−5.  doi: 10.1126/science.aai9081

    19. [19]

      Ahmad, S.; Fu, P.; Yu, S.; Yang, Q.; Liu, X.; Wang, X.; Wang, X.; Guo, X.; Li, C. Dion-Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule 2019, 3, 794−806.  doi: 10.1016/j.joule.2018.11.026

    20. [20]

      Chen, H.; Xia, Y.; Wu, B.; Liu, F.; Niu, T.; Chao, L.; Xing, G.; Sum, T.; Chen, Y.; Huang, W. Critical role of chloride in organic ammonium spacer on the performance of Low-dimensional Ruddlesden-Popper perovskite solar cells. Nano Energy 2019, 56, 373−381.  doi: 10.1016/j.nanoen.2018.11.019

    21. [21]

      Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 2014, 53, 11232−11235.  doi: 10.1002/anie.201406466

    22. [22]

      Tsai, H.; Nie, W.; Blancon, J. C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S.; Pedesseau, L.; Even, J.; Alam, M. A.; Gupta, G.; Lou, J.; Ajayan, P. M.; Bedzyk, M. J.; Kanatzidis, M. G.; Mohite, A. D. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 2016, 536, 312−316.  doi: 10.1038/nature18306

    23. [23]

      Han, S.; Yao, Y.; Liu, X.; Li, B.; Ji, C.; Sun, Z.; Hong, M.; Luo, J. Highly oriented thin films of 2D Ruddlesden-Popper hybrid perovskite toward superfast response photodetectors. Small 2019, 15, 1901194−6.  doi: 10.1002/smll.201901194

    24. [24]

      Tsai, H.; Liu, F.; Shrestha, S.; Fernando, K.; Tretiak, S.; Scott, B.; Vo, D. T.; Strzalka, J.; Nie, W. A sensitive and robust thin-film X-ray detector using 2D layered perovskite diodes. Sci. Adv. 2020, 6, eaay0815−7.  doi: 10.1126/sciadv.aay0815

    25. [25]

      Lim, J. W.; Wang, H.; Choi, C. H.; Kwon, H.; Quan, L. N.; Park, W. T.; Noh, Y. Y.; Kim, D. H. Self-powered reduced-dimensionality perovskite photodiodes with controlled crystalline phase and improved stability. Nano Energy 2019, 57, 761−770.  doi: 10.1016/j.nanoen.2018.12.068

    26. [26]

      Niu, T.; Ren, H.; Wu, B.; Xia, Y.; Xie, X.; Yang, Y.; Gao, X.; Chen, Y.; Huang, W. Reduced-dimensional perovskite enabled by organic diamine for efficient photovoltaics. J. Phys. Chem. Lett. 2019, 10, 2349−2356.  doi: 10.1021/acs.jpclett.9b00750

    27. [27]

      Lu, D.; Lv, G.; Xu, Z.; Dong, Y.; Ji, X.; Liu, Y. Thiophene-based two-dimensional Dion-Jacobson perovskite solar cells with over 15% efficiency. J. Am. Chem. Soc. 2020, 142, 11114−11122.  doi: 10.1021/jacs.0c03363

    28. [28]

      Park, I. H.; Kwon, K. C.; Zhu, Z.; Wu, X.; Li, R.; Xu, Q. H.; Loh, K. P. Self-powered photodetector using two-dimensional ferroelectric Dion-Jacobson hybrid perovskites. J. Am. Chem. Soc. 2020, 142, 18592−18598.  doi: 10.1021/jacs.0c08189

    29. [29]

      Lai, Z.; Dong, R.; Zhu, Q.; Meng, Y.; Wang, F.; Li, F.; Bu, X.; Kang, X.; Zhang, H.; Quan, Q.; Wang, W.; Wang, F.; Yip, S.; Ho, J. C. Bication-mediated quasi-2D halide perovskites for high-performance flexible photodetectors: from Ruddlesden-Popper type to Dion-Jacobson type. ACS Appl. Mater. Interfaces 2020, 12, 39567−39577.  doi: 10.1021/acsami.0c09651

    30. [30]

      Cao, D. H.; Stoumpos, C. C.; Farha, O. K.; Hupp, J. T.; Kanatzidis, M. G. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 2015, 137, 7843−7850.  doi: 10.1021/jacs.5b03796

    31. [31]

      Cao, F.; Tian, W.; Deng, K.; Wang, M.; Li, L. Self-powered UV-Vis-NIR photodetector based on conjugated-polymer/CsPbBr3 nanowire array. Adv. Funct. Mater. 2019, 29, 1906756−7.  doi: 10.1002/adfm.201906756

    32. [32]

      Ahmadi, M.; Wu, T.; Hu, B. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics. Adv. Mater. 2017, 29, 1605242−24.  doi: 10.1002/adma.201605242

    33. [33]

      Bansode, U.; Rahman, A.; Ogale, S. Low-temperature processing of optimally polymer-wrapped α-CsPbI3 for self-powered flexible photo-detector application. J. Mater. Chem. C 2019, 7, 6986−6996.  doi: 10.1039/C9TC01292C

    34. [34]

      Wang, K.; Wu, C.; Yang, D.; Jiang, Y.; Priya, S. Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano 2018, 12, 4919−4929.  doi: 10.1021/acsnano.8b01999

  • 加载中
    1. [1]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    2. [2]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    3. [3]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    4. [4]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    5. [5]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    6. [6]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    7. [7]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    8. [8]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    9. [9]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    10. [10]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    11. [11]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    12. [12]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    13. [13]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    14. [14]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    15. [15]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    16. [16]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    17. [17]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    18. [18]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    19. [19]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    20. [20]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

Metrics
  • PDF Downloads(2)
  • Abstract views(183)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return