Citation: Xiao-Peng HU, Zhi-Feng WANG, Wei DENG, Jin TONG, Shu-Yan YU. Molecular Structures and Catalytical Performance in Suzuki-coupling Reaction of Novel Dipalladium Clip-shaped Complexes with Bifunctional Pyrazolate Ligands[J]. Chinese Journal of Structural Chemistry, ;2021, 40(7): 843-850. doi: 10.14102/j.cnki.0254-5861.2011-3174 shu

Molecular Structures and Catalytical Performance in Suzuki-coupling Reaction of Novel Dipalladium Clip-shaped Complexes with Bifunctional Pyrazolate Ligands

  • Corresponding author: Shu-Yan YU, selfassembly@bjut.edu.cn
  • Received Date: 11 March 2011
    Accepted Date: 27 May 2021

    Fund Project: the Beijing Natural Science Foundation of China 2212002National Natural Science Foundation of China 21906002National Natural Science Foundation of China 21471011the Beijing Municipal Science and Technology Project KM202010005010the Beijing Municipal High Level Innovative Team Building Program IDHT20180504the Beijing Outstanding Young Scientist Program BJJWZYJH01201910005017

Figures(5)

  • A series of clip-shaped cationic molecular corners C1~C4 (C1 = [(bpy)2Pd2(L1)2]2+, C2 = [(dmbpy)2Pd2(L1)2]2+, C3 = (bpy)2Pd2(L2)2]2+, C4 = (dmbpy)2Pd2(L2)2]2+, bpy = 2, 2-bipyridine, dmbpy = 4, 4΄-dimethyl-2, 2-bipyridine) were synthesized through dipalladium complexes [(bpy)2Pd2(NO3)2](NO3)2, [(dmbpy)2Pd2(NO3)2](NO3)2 and bifunctional pyrazole ligands 4-(3, 4-dimethoxyphenyl)-3, 5-dimethyl-1H-pyrazol (HL1) and 4, 4΄-(5-(1H-pyrazol-4-yl)-1, 3-phenylene)dipyridine (HL2). Complexes C1~C4 were characterized by 1H and 13C NMR, electrospray ionization mass spectrometry (ESI-MS), elemental analysis, and IR spectroscopy. The X-ray diffraction analysis of C1∙2NO3 revealed a Pd2 dimetallic clip-shaped structure which was synthesized by two bifunctional ligands doubly bridged by the [(bpy)Pd]2 dimetal units. Additionally, all of the complexes with NO3 as counter anions exhibited high-efficiency catalytical performance in the Suzuki-coupling reaction attributed to the tunable impact and weak dinuclear Pd(Ⅱ)…Pd(Ⅱ) intramolecular bonding interaction.
  • 加载中
    1. [1]

      Sauvage, J. P. Transition Metals in Supramolecular Chemistry, Perspectives in Supramolecular Chemistry. Vol. 5, Wiley, New York 1999.

    2. [2]

      Fujita, M. Molecular Self-assembly Organic Versus Inorganic Approach (Structure and Bonding). Vol. 96, Springer, New York 2000.

    3. [3]

      Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 2011, 111, 6810–6918.  doi: 10.1021/cr200077m

    4. [4]

      Wang, W.; Wang, Y. X.; Yang, H. B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev. 2016, 45, 2656–2693.  doi: 10.1039/C5CS00301F

    5. [5]

      Care, J. B. Introduction to Ligand Field Theory. New York: McGraw Hill 1962.

    6. [6]

      Brown, C. J.; Toste, F. D.; Bergman, R. G.; Raymond, K. N. Supramolecular catalysis in metal-ligand cluster hosts. Chem. Rev. 2015, 115, 3012–3035.  doi: 10.1021/cr4001226

    7. [7]

      Xu, H.; Chen, R. F.; Sun, Q.; Lai, W. Y.; Su, Q. Q.; Huang, W.; Liu, X. G. Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014, 43, 3259–3302.  doi: 10.1039/C3CS60449G

    8. [8]

      Tiwari, V. K.; Mishra, B. B.; Mishra, K. B.; Mishra, N.; Singh, A.; Chen, X. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev. 2016, 116, 3086–3240.  doi: 10.1021/acs.chemrev.5b00408

    9. [9]

      Yu, S. Y.; Li, S. H.; Huang, H. P.; Zhang, Z. X.; Jiao, Q.; Shen, H.; Hu, X. X.; Huang, H. Molecular self-assembly with modularization and directionality: vectormanipulation at metal centers. Curr. Org. Chem. 2005, 9, 555–563.  doi: 10.2174/1385272053544416

    10. [10]

      Ismayilov, R. H.; Wang, W. Z.; Lee, G. H.; Yeh, C. Y.; Hua, S. A.; Song, Y.; Rohmer, M. M.; Bénard, M.; Peng, S. M. Two linear undecanickel mixed-valence complexes: increasing the size and the scope of the electronic properties of nickel metal strings. Angew. Chem. Int. Ed. 2011, 50, 2045–2048.  doi: 10.1002/anie.201006695

    11. [11]

      Mitsumi, M.; Ueda, H.; Furukawa, K.; Ozawa, Y.; Toriumi, K.; Kurmoo, M. Constructing highly conducting metal-metal bonded solids by electrocrystallization of [Pt2(RCS2)4] (RCS2 = dithiocarboxylato, R = methyl or ethyl). J. Am. Chem. Soc. 2008, 130, 14102–14104.  doi: 10.1021/ja805794a

    12. [12]

      Qin, J. H.; Huang, Y. D.; Shi, M. Y.; Wang, H. R.; Han, M. L.; Yang, X. G.; Li, F. F.; Ma, L. F. Aqueous-phase detection of antibiotics and nitroaromatic explosives by an alkali-resistant Zn-MOF directed by anionic liquid. RSC Adv. 2020, 10, 1439–1446.  doi: 10.1039/C9RA08733H

    13. [13]

      Yam, V. W. W.; Au, V. K. M.; Leung, S. Y. L. Light-emitting self-assembled materials based on d8 and d10 transition metal complexes. Chem. Rev. 2015, 115, 7589–7728.  doi: 10.1021/acs.chemrev.5b00074

    14. [14]

      Marques, A. J.; Palanimurugan, R.; Matias, A. C.; Ramos, P. C.; Dohme, R. J. Catalytic mechanism and assembly of the proteasom. Chem. Rev. 2009, 109, 1509–1536.  doi: 10.1021/cr8004857

    15. [15]

      Park, J.; Hong, S. Cooperative bimetallic catalysis in asymmetric transformations. Chem. Soc. Rev. 2012, 41, 6931–6943.  doi: 10.1039/c2cs35129c

    16. [16]

      Qin, J. H.; Huang, Y. D.; Zhao, Y.; Yang, X. G.; Li, F. F.; Wang, C.; Ma, L. F. Highly dense packing of chromophoric linkers achievable in a pyrene-based metal-organic framework for photoelectric response. Inorg. Chem. 2019, 58, 15013–15016.  doi: 10.1021/acs.inorgchem.9b02203

    17. [17]

      Friis, S. D.; Pirnot, M. T.; Dupuis, L. N.; Buchwald, S. L. A dual palladium and copper hydride catalyzed approach for alkyl-alkyl cross-coupling of aryl halides and olefins. Angew. Chem. Int. Ed. 2017, 56, 7242–7724.  doi: 10.1002/anie.201703400

    18. [18]

      Zhang, J. J.; Hu, S. M.; Xiang, S. C.; Sheng, T.; Wu, X. T.; Li, Y. M. Syntheses, structures, and properties of high-nuclear 3d-4f clusters with amino acid as ligand:   {Gd6Cu24}, {Tb6Cu26}, and {(Ln6Cu24)2Cu} (Ln = Sm, Gd). Inorg. Chem. 2006, 45, 7173–7181.  doi: 10.1021/ic060610l

    19. [19]

      Yu, S. Y.; Lu, H. L. From metal-metal bonding to supra-metal-metal bonding directed self-assembly: supramolecular architectures of group 10 and 11 metals with ligands from mono- to poly-pyrazoles. Isr. J. Chem. 2019, 59, 166–183.  doi: 10.1002/ijch.201800097

    20. [20]

      Halcrow, M. A. Pyrazoles and pyrazolides-flexible synthons in self-assembly. Dalton Trans. 2009, 2059–2073.

    21. [21]

      Chen, H.; Yu, Z. C.; Deng, W.; Jiang, X. F.; Yu, S. Y. Pyrazolate-based dipalladium (Ⅱ, Ⅱ) complexes: synthesis, characterization and catalytical performance in Suzuki-coupling reaction. Chin. J. Inorg. Chem. 2017, 33, 939–946.

    22. [22]

      Qin, L.; Yao, L. Y.; Yu, S. Y. Self-assembly of [M8L4] and [M4L2] fluorescent metallo macrocycles with carbazole-based dipyrazole ligands. Inorg. Chem. 2012, 51, 2443–2453.  doi: 10.1021/ic202407b

    23. [23]

      Hu, Z. Y.; Deng, W.; Lu, H. L.; Huang, H. P.; Yu, S. Y. Mononuclear assemblies with metal-metal interaction: syntheses and catalytical performance in Suzuki-coupling reaction. Chin. J. Inorg. Chem. 2018, 34, 387–396.

    24. [24]

      Brown, C. J.; Toste, F. D.; Bergman, R. G.; Raymond, K. N. Supramolecular catalysis in metal-ligand cluster hosts. Chem. Rev. 2015, 115, 3012–3035.  doi: 10.1021/cr4001226

    25. [25]

      Sun, W. Q.; Tong, J.; Lu, H. L.; Ma, T. T.; Ma, H. W.; Yu, S. Y. Programmable self-assembly of heterometallic palladium(Ⅱ)-copper(Ⅱ) 1D grid-chain using dinuclear palladium(Ⅱ) corners with pyrazole-carboxylic acid ligands. Chem. Asian J. 2018, 13, 1108–1113.  doi: 10.1002/asia.201701766

    26. [26]

      Hu, Z. Y.; Deng, W.; Lu, H. L.; Huang, H. P.; Yu, S. Y. Mononuclear assemblies with metal-metal interaction: syntheses and catalytical performance in suzuki-coupling reaction. Chin. J. Inorg. Chem. 2015, 31, 1278–1286.

    27. [27]

      Sheldrick, G. M. SHELXS-97, Program for the Solution of Crystal Structure. University of Göttingen, Germany 1997.

    28. [28]

      Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structure. University of Göttingen, Germany 1997.

    29. [29]

      Reek, J. N. H.; Arevalo, S.; Heerbeek, R. V.; Kamer, P. C. J.; Leeuwen, P. V. Advances in Catalysis, Vol 49, Academic Press, Amsterdam 2006, 71–151.

    30. [30]

      Brown, H. C. Organic Syntheses via Boranes. Wiley, New York 2001.

  • 加载中
    1. [1]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    2. [2]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    3. [3]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    4. [4]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    5. [5]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    6. [6]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    7. [7]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    8. [8]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    9. [9]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    10. [10]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    11. [11]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    12. [12]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    13. [13]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    14. [14]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    15. [15]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    16. [16]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    17. [17]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    18. [18]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    19. [19]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    20. [20]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

Metrics
  • PDF Downloads(1)
  • Abstract views(208)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return