Citation: Ming FANG, Qi QIN, Qian CAI, Wei LIU. Transparent Co3FeOx Film Passivated BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting[J]. Chinese Journal of Structural Chemistry, ;2021, 40(11): 1505-1512. doi: 10.14102/j.cnki.0254-5861.2011-3162 shu

Transparent Co3FeOx Film Passivated BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting

  • Corresponding author: Wei LIU, liuw@fjirsm.ac.cn
  • Received Date: 26 February 2021
    Accepted Date: 26 March 2021

    Fund Project: the National Natural Science Foundation of China 61674152the National Natural Science Foundation of China 51902309the Natural Science Foundation of Fujian Province 2018J05097

Figures(4)

  • Photoelectrochemistry that use semiconductors to absorb sunlight for water splitting provides an effective method for the development of renewable hydrogen energy in the future. In this paper, a transparent and highly-efficient cobalt-iron oxide (Co3FeOx) nano-film was fabricated through hydrothermal method by directional adjustment of atomic ratio to promote the kinetics of BiVO4 (BVO) photoanode water oxidation. As a result, the Co3FeOx-modified BVO photoanode (Co3FeOx/BVO) exhibits an impressive photocurrent density of 4.0 mA·cm-2 at 1.23 V versus reversible hydrogen electrode (RHE), approximately 2.17-fold higher than that of bare BVO, as well as a cathodically shifted onset potential of 320 mV. Transparent catalyst nanolayer structure is clarified by ultraviolet-visible spectroscopy. In addition, the Co3FeOx/BVO photoanode has better stability, and there is no obvious activity degradation after 10 hours of reaction. This strategy provides a broad prospect for the use of water oxidation co-catalyst to achieve effective water splitting.
  • 加载中
    1. [1]

      Gratzel, M. Photoelectrochemical cells. Nature 2001, 414, 338-344.  doi: 10.1038/35104607

    2. [2]

      Nellist, M. R.; Laskowski, F. A. L.; Lin, F.; Mills, T. J.; Boettcher, S. W. Semiconductor-electrocatalyst interfaces: theory, experiment, and applications in photoelectrochemical water splitting. Acc. Chem. Res. 2016, 49, 733-740.  doi: 10.1021/acs.accounts.6b00001

    3. [3]

      Jiang, C.; Moniz, S. J. A.; Wang, A.; Zhang, T.; Tang, J. Photoelectrochemical devices for solar water splitting-materials and challenges. Chem. Soc. Rev. 2017, 46, 4645-4660.  doi: 10.1039/C6CS00306K

    4. [4]

      Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. Visible-light driven heterojunction photocatalysts for water splitting-acritical review. Energy Environ. Sci. 2015, 8, 731-759.  doi: 10.1039/C4EE03271C

    5. [5]

      Zhang, H.; Li, L.; Liu, C.; Wang, W.; Liang, P.; Mitsuzak, N.; Chen, Z. Carbon coated alpha-Fe2O3 photoanode synthesized by a facile anodic electrodeposition for highly efficient water oxidation. Electronic Materials Letters 2018, 14, 348-356.  doi: 10.1007/s13391-018-0036-z

    6. [6]

      Huang, J.; Ding, Y.; Luo, X.; Feng, Y. Solvation effect promoted formation of p-n junction between WO3 and FeOOH: a high performance photoanode for water oxidation. J. Catal. 2016, 333, 200-206.  doi: 10.1016/j.jcat.2015.11.003

    7. [7]

      Tian, T.; Gao, H.; Zhou, X.; Zheng, L.; Wu, J.; Li, K.; Ding, Y. Study of the active sites in porous nickel oxide nanosheets by manganese modulation for enhanced oxygen evolution catalysis. ACS Energy Lett. 2018, 3, 2150-2158.  doi: 10.1021/acsenergylett.8b01206

    8. [8]

      Kim, T. L.; Choi, M. J.; Jang, H. W. Boosting interfacial charge transfer for efficient water-splitting photoelectrodes: progress in bismuth vanadate photoanodes using various strategies. Mrs Communications 2018, 8, 809-822.  doi: 10.1557/mrc.2018.106

    9. [9]

      Xu, X. T.; Pan, L.; Zhang, X.; Wang, L.; Zou, J. J. Rational design and construction of cocatalysts for semiconductor-based photo-electrochemical oxygen evolution: a comprehensive Review. Advanced Science 2019, 6.

    10. [10]

      Zhong, D. K.; Choi, S.; Gamelin, D. R. Near-complete suppression of surface recombination in solar photoelectrolysis by "Co-Pi" catalyst-modified W: BiVO4. J. Am. Chem. Soc. 2011, 133, 18370-18377.  doi: 10.1021/ja207348x

    11. [11]

      Abdi, F. F.; Savenije, T. J.; May, M. M.; Dam, B.; van de Krol, R. The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. J. Phys. Chem. Lett. 2013, 4, 2752-2757.  doi: 10.1021/jz4013257

    12. [12]

      McDonald, K. J.; Choi, K. S. A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ. Sci. 2012, 5, 8553-8557.  doi: 10.1039/c2ee22608a

    13. [13]

      Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990-994.  doi: 10.1126/science.1246913

    14. [14]

      Zhou, M.; Bao, J.; Xu, Y.; Zhang, J.; Xie, J.; Guan, M.; Wang, C.; Wen, L.; Lei, Y.; Xie, Y. Photoelectrodes based upon Mo: BiVO4 inverse opals for photoelectrochemical water splitting. ACS Nano 2014, 8, 7088-7098.  doi: 10.1021/nn501996a

    15. [15]

      Gao, L.; Long, X.; Wei, S.; Wang, C.; Wang, T.; Li, F.; Hu, Y.; Ma, J.; Jin, J. Facile growth of AgVO3 nanoparticles on Mo-doped BiVO4 film for enhanced photoelectrochemical water oxidation. Chem. Eng. J. 2019, 378.

    16. [16]

      Reddy, C. V.; Reddy, I. N.; Ravindranadh, K.; Reddy, K. R.; Shim, J.; Cheolho, B. Au-doped BiVO4 nanostructure-based photoanode with enhanced photoelectrochemical solar water splitting and electrochemical energy storage ability. Appl. Surf. Sci. 2021, 545.

    17. [17]

      Nellist, M. R.; Qiu, J.; Laskowski, F. A. L.; Toma, F. M.; Boettcher, S. W. Potential-sensing electrochemical AFM Shows CoPi as a hole collector and oxygen evolution catalyst on BiVO4 water-splitting photoanodes. ACS Energy Lett. 2018, 3, 2286-2291.  doi: 10.1021/acsenergylett.8b01150

    18. [18]

      Zhang, L.; Reisner, E.; Baumberg, J. J. Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO4 photoanodes for solar water oxidation. Energy Environ. Sci. 2014, 7, 1402-1408.  doi: 10.1039/C3EE44031A

    19. [19]

      Zhang, B.; Wang, L.; Zhang, Y.; Ding, Y.; Bi, Y. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew. Chem. Int. Ed. 2018, 57, 2248-2252.  doi: 10.1002/anie.201712499

    20. [20]

      Zhang, P.; Li, S. Q.; Guo, Z. J.; Zhang, C. Q.; Yang, C. Q.; Han, S. S. Investigation on purification of α-Fe2O3 from zinc smelting iron slag by superconducting HGMS technology. Progress in Superconductivity and Cryogenics 2018, 20, 16-19.

    21. [21]

      Bai, S.; Chu, H.; Xiang, X.; Luo, R.; He, J.; Chen, A. Fabricating of Fe2O3/BiVO4 heterojunction based photoanode modified with NiFe-LDH nanosheets for efficient solar water splitting. Chem. Eng. J. 2018, 350, 148-156.  doi: 10.1016/j.cej.2018.05.109

    22. [22]

      Xie, M.; Fu, X.; Jing, L.; Luan, P.; Feng, Y.; Fu, H. Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting. Adv. Energy Mater. 2014, 4.

    23. [23]

      Li, D.; Liu, Y.; Shi, W.; Shao, C.; Wang, S.; Ding, C.; Liu, T.; Fan, F.; Shi, J.; Li, C. Crystallographic-orientation-dependent charge separation of BiVO4 for solar water oxidation. ACS Energy Lett. 2019, 4, 825-831.  doi: 10.1021/acsenergylett.9b00153

    24. [24]

      Han, H. S.; Shin, S.; Kim, D. H.; Park, I. J.; Kim, J. S.; Huang, P. S.; Lee, J. K.; Cho, I. S.; Zheng, X. Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control. Energy Environ. Sci. 2019, 12, 1427-1427.  doi: 10.1039/C9EE90017A

    25. [25]

      Li, M.; Yu, S.; Huang, H.; Li, X.; Feng, Y.; Wang, C.; Wang, Y.; Ma, T.; Guo, L.; Zhang, Y. Unprecedented eighteen-faceted BiOCl with a ternary facet junction boosting cascade charge flow and photo-redox. Angew. Chem. Int. Ed. 2019, 58, 9517-9521.  doi: 10.1002/anie.201904921

    26. [26]

      Kuang, P.; Zhang, L.; Cheng, B.; Yu, J. Enhanced charge transfer kinetics of Fe2O3/CdS composite nanorod arrays using cobalt-phosphate as cocatalyst. Appl. Catal., B 2017, 218, 570-580.  doi: 10.1016/j.apcatb.2017.07.002

    27. [27]

      Ding, C.; Shi, J.; Wang, Z.; Li, C. Correction to photoelectrocatalytic water splitting: significance of cocatalysts, electrolyte, and interfaces. ACS Catal. 2017, 7, 1706-1706.  doi: 10.1021/acscatal.7b00155

    28. [28]

      Wang, S.; Wang, T.; Wang, X.; Deng, Q.; Yang, J.; Mao, Y.; Wang, G. Intercalation and elimination of carbonate ions of NiCo layered double hydroxide for enhanced oxygen evolution catalysis. Int. J. Hydrogen Energy 2020, 45, 12629-12640.  doi: 10.1016/j.ijhydene.2020.02.212

    29. [29]

      Song, F.; Hu, X. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481-16484.  doi: 10.1021/ja5096733

    30. [30]

      Batchellor, A. S.; Boettcher, S. W. Pulse-electrodeposited Ni–Fe (oxy)hydroxide oxygen evolution electrocatalysts with high geometric and intrinsic activities at large mass loadings. ACS Catal. 2015, 5, 6680-6689.  doi: 10.1021/acscatal.5b01551

    31. [31]

      Zhou, X.; Shen, X.; Xia, Z.; Zhang, Z.; Li, J.; Ma, Y.; Qu, Y. Hollow fluffy Co3O4 cages as efficient electroactive materials for supercapacitors and oxygen evolution reaction. ACS Appl. Mater. Interfaces 2015, 7, 20322-20331.  doi: 10.1021/acsami.5b05989

    32. [32]

      Xu, L.; Jiang, Q.; Xiao, Z.; Li, X.; Huo, J.; Wang, S.; Dai, L. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2016, 55, 5277-5281.  doi: 10.1002/anie.201600687

    33. [33]

      Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R.; Davis, R. C.; Bargar, J. R.; Norskov, J. K.; Nilsson, A.; Bell, A. T. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305-1313.  doi: 10.1021/ja511559d

    34. [34]

      Chen, J. Y. C.; Dang, L.; Liang, H.; Bi, W.; Gerken, J. B.; Jin, S.; Alp, E. E.; Stahl, S. S. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe4+ by mossbauer spectroscopy. J. Am. Chem. Soc. 2015, 137, 15090-15093.  doi: 10.1021/jacs.5b10699

    35. [35]

      Liu, H.; Wang, Y.; Lu, X.; Hu, Y.; Zhu, G.; Chen, R.; Ma, L.; Zhu, H.; Tie, Z.; Liu, J.; Jin, Z. The effects of Al substitution and partial dissolution on ultrathin NiFeAl trinary layered double hydroxide nanosheets for oxygen evolution reaction in alkaline solution. Nano Energy 2017, 35, 350-357.  doi: 10.1016/j.nanoen.2017.04.011

    36. [36]

      Xie, Y.; Wang, X.; Tang, K.; Li, Q.; Yan, C. Blending Fe3O4 into a Ni/NiO composite for efficient and stable bifunctional electrocatalyst. Electrochim. Acta 2018, 264, 225-232.  doi: 10.1016/j.electacta.2018.01.136

    37. [37]

      Ren, N.; Wang, A.; Gao, L.; Xin, L.; Lee, D. J.; Su, A. Bioaugmented hydrogen production from carboxymethyl cellulose and partially delignified corn stalks using isolated cultures. Int. J. Hydrogen Energy 2008, 33, 5250-5255.  doi: 10.1016/j.ijhydene.2008.05.020

    38. [38]

      Lee, D. K.; Choi, K. S. Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nature Energy 2018, 3, 53-60.  doi: 10.1038/s41560-017-0057-0

    39. [39]

      Qin, Q.; Cai, Q.; Li, J.; Jian, C.; Hong, W.; Liu, W. High quantum efficiency achieved on BiVO4 photoanode for efficient solar water oxidation. Solar Rrl 2019, 3.

    40. [40]

      Qin, Q.; Cai, Q.; Hong, W.; Jian, C.; Liu, W. Improved hole extraction and durability of BiVO4 photoanode for solar water splitting under extreme pH condition. Chem. Eng. J. 2020, 402.

    41. [41]

      Wei, S.; Wang, C.; Long, X.; Wang, T.; Wang, P.; Zhang, M.; Li, S.; Ma, J.; Jin, J.; Wu, L. An oxygen vacancy-modulated homojunction structural CuBi2O4 photocathodes for efficient solar water reduction. Nanoscale 2020, 12, 15193-15200.  doi: 10.1039/D0NR04473C

    42. [42]

      Palaniselvam, T.; Shi, L.; Mettela, G.; Anjum, D. H.; Li, R.; Katuri, K. P.; Saikaly, P. E.; Wang, P. Vastly enhanced BiVO4 photocatalytic OER performance by NiCoO2 as cocatalyst. Adv. Mater. Interfaces 2017, 4.

    43. [43]

      Yin, L.; Adler, I.; Tsang, T.; Matienzo, L. J.; Grim, S. O. Paramagnetism and shake-up satellites in X-ray photoelectron-spectra. Chem. Phys. Lett. 1974, 24, 81-84.  doi: 10.1016/0009-2614(74)80219-8

    44. [44]

      Zhou, L.; Zhao, C.; Giri, B.; Allen, P.; Xu, X.; Joshi, H.; Fan, Y.; Titova, L. V.; Rao, P. M. High light absorption and charge separation efficiency at low applied voltage from Sb-doped SnO2/BiVO4 core/shell nanorod-array photoanodes. Nano Lett. 2016, 16, 3463-3474.  doi: 10.1021/acs.nanolett.5b05200

    45. [45]

      Seabold, J. A.; Choi, K. S. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 2186-2192.  doi: 10.1021/ja209001d

  • 加载中
    1. [1]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    2. [2]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    3. [3]

      Lina WangHairu WangQian BuQiong MeiJunbo ZhongBo BaiQizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139

    4. [4]

      Hailang DengAbebe Reda WolduAbdul QayumZanling HuangWeiwei ZhuXiang PengPaul K. ChuLiangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892

    5. [5]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    6. [6]

      Zuyou SongYong JiangQiao GouYini MaoYimin JiangWei ShenMing LiRongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793

    7. [7]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    8. [8]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    9. [9]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    10. [10]

      Kun WangJiaxuan QiuZefei WuYang LiuYongqi LiuXiangpeng ChenBao ZangJianmei ChenYunchao LeiLonglu WangQiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993

    11. [11]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    12. [12]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    13. [13]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    14. [14]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    15. [15]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    16. [16]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    17. [17]

      Limin Wang Feiyi Huang Xinyi Liang Rajkumar Devasenathipathy Xiaotian Liu Qiulan Huang Zhongyun Yang Dujuan Huang Xinglan Peng Du-Hong Chen Youjun Fan Wei Chen . Photoelectric synergy induced synchronous functionalization of graphene and its applications in water splitting and desalination. Chinese Journal of Structural Chemistry, 2025, 44(2): 100501-100501. doi: 10.1016/j.cjsc.2024.100501

    18. [18]

      Liang DongJingkuo QuTuo ZhangGuanghui ZhuNingning MaChang ZhaoYi YuanXiangjiu GuanLiejin Guo . MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(3): 110397-. doi: 10.1016/j.cclet.2024.110397

    19. [19]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    20. [20]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

Metrics
  • PDF Downloads(1)
  • Abstract views(286)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return