Transparent Co3FeOx Film Passivated BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting
- Corresponding author: Wei LIU, liuw@fjirsm.ac.cn
Citation:
Ming FANG, Qi QIN, Qian CAI, Wei LIU. Transparent Co3FeOx Film Passivated BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting[J]. Chinese Journal of Structural Chemistry,
;2021, 40(11): 1505-1512.
doi:
10.14102/j.cnki.0254-5861.2011-3162
Gratzel, M. Photoelectrochemical cells. Nature 2001, 414, 338-344.
doi: 10.1038/35104607
Nellist, M. R.; Laskowski, F. A. L.; Lin, F.; Mills, T. J.; Boettcher, S. W. Semiconductor-electrocatalyst interfaces: theory, experiment, and applications in photoelectrochemical water splitting. Acc. Chem. Res. 2016, 49, 733-740.
doi: 10.1021/acs.accounts.6b00001
Jiang, C.; Moniz, S. J. A.; Wang, A.; Zhang, T.; Tang, J. Photoelectrochemical devices for solar water splitting-materials and challenges. Chem. Soc. Rev. 2017, 46, 4645-4660.
doi: 10.1039/C6CS00306K
Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. Visible-light driven heterojunction photocatalysts for water splitting-acritical review. Energy Environ. Sci. 2015, 8, 731-759.
doi: 10.1039/C4EE03271C
Zhang, H.; Li, L.; Liu, C.; Wang, W.; Liang, P.; Mitsuzak, N.; Chen, Z. Carbon coated alpha-Fe2O3 photoanode synthesized by a facile anodic electrodeposition for highly efficient water oxidation. Electronic Materials Letters 2018, 14, 348-356.
doi: 10.1007/s13391-018-0036-z
Huang, J.; Ding, Y.; Luo, X.; Feng, Y. Solvation effect promoted formation of p-n junction between WO3 and FeOOH: a high performance photoanode for water oxidation. J. Catal. 2016, 333, 200-206.
doi: 10.1016/j.jcat.2015.11.003
Tian, T.; Gao, H.; Zhou, X.; Zheng, L.; Wu, J.; Li, K.; Ding, Y. Study of the active sites in porous nickel oxide nanosheets by manganese modulation for enhanced oxygen evolution catalysis. ACS Energy Lett. 2018, 3, 2150-2158.
doi: 10.1021/acsenergylett.8b01206
Kim, T. L.; Choi, M. J.; Jang, H. W. Boosting interfacial charge transfer for efficient water-splitting photoelectrodes: progress in bismuth vanadate photoanodes using various strategies. Mrs Communications 2018, 8, 809-822.
doi: 10.1557/mrc.2018.106
Xu, X. T.; Pan, L.; Zhang, X.; Wang, L.; Zou, J. J. Rational design and construction of cocatalysts for semiconductor-based photo-electrochemical oxygen evolution: a comprehensive Review. Advanced Science 2019, 6.
Zhong, D. K.; Choi, S.; Gamelin, D. R. Near-complete suppression of surface recombination in solar photoelectrolysis by "Co-Pi" catalyst-modified W: BiVO4. J. Am. Chem. Soc. 2011, 133, 18370-18377.
doi: 10.1021/ja207348x
Abdi, F. F.; Savenije, T. J.; May, M. M.; Dam, B.; van de Krol, R. The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. J. Phys. Chem. Lett. 2013, 4, 2752-2757.
doi: 10.1021/jz4013257
McDonald, K. J.; Choi, K. S. A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ. Sci. 2012, 5, 8553-8557.
doi: 10.1039/c2ee22608a
Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990-994.
doi: 10.1126/science.1246913
Zhou, M.; Bao, J.; Xu, Y.; Zhang, J.; Xie, J.; Guan, M.; Wang, C.; Wen, L.; Lei, Y.; Xie, Y. Photoelectrodes based upon Mo: BiVO4 inverse opals for photoelectrochemical water splitting. ACS Nano 2014, 8, 7088-7098.
doi: 10.1021/nn501996a
Gao, L.; Long, X.; Wei, S.; Wang, C.; Wang, T.; Li, F.; Hu, Y.; Ma, J.; Jin, J. Facile growth of AgVO3 nanoparticles on Mo-doped BiVO4 film for enhanced photoelectrochemical water oxidation. Chem. Eng. J. 2019, 378.
Reddy, C. V.; Reddy, I. N.; Ravindranadh, K.; Reddy, K. R.; Shim, J.; Cheolho, B. Au-doped BiVO4 nanostructure-based photoanode with enhanced photoelectrochemical solar water splitting and electrochemical energy storage ability. Appl. Surf. Sci. 2021, 545.
Nellist, M. R.; Qiu, J.; Laskowski, F. A. L.; Toma, F. M.; Boettcher, S. W. Potential-sensing electrochemical AFM Shows CoPi as a hole collector and oxygen evolution catalyst on BiVO4 water-splitting photoanodes. ACS Energy Lett. 2018, 3, 2286-2291.
doi: 10.1021/acsenergylett.8b01150
Zhang, L.; Reisner, E.; Baumberg, J. J. Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO4 photoanodes for solar water oxidation. Energy Environ. Sci. 2014, 7, 1402-1408.
doi: 10.1039/C3EE44031A
Zhang, B.; Wang, L.; Zhang, Y.; Ding, Y.; Bi, Y. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew. Chem. Int. Ed. 2018, 57, 2248-2252.
doi: 10.1002/anie.201712499
Zhang, P.; Li, S. Q.; Guo, Z. J.; Zhang, C. Q.; Yang, C. Q.; Han, S. S. Investigation on purification of α-Fe2O3 from zinc smelting iron slag by superconducting HGMS technology. Progress in Superconductivity and Cryogenics 2018, 20, 16-19.
Bai, S.; Chu, H.; Xiang, X.; Luo, R.; He, J.; Chen, A. Fabricating of Fe2O3/BiVO4 heterojunction based photoanode modified with NiFe-LDH nanosheets for efficient solar water splitting. Chem. Eng. J. 2018, 350, 148-156.
doi: 10.1016/j.cej.2018.05.109
Xie, M.; Fu, X.; Jing, L.; Luan, P.; Feng, Y.; Fu, H. Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting. Adv. Energy Mater. 2014, 4.
Li, D.; Liu, Y.; Shi, W.; Shao, C.; Wang, S.; Ding, C.; Liu, T.; Fan, F.; Shi, J.; Li, C. Crystallographic-orientation-dependent charge separation of BiVO4 for solar water oxidation. ACS Energy Lett. 2019, 4, 825-831.
doi: 10.1021/acsenergylett.9b00153
Han, H. S.; Shin, S.; Kim, D. H.; Park, I. J.; Kim, J. S.; Huang, P. S.; Lee, J. K.; Cho, I. S.; Zheng, X. Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control. Energy Environ. Sci. 2019, 12, 1427-1427.
doi: 10.1039/C9EE90017A
Li, M.; Yu, S.; Huang, H.; Li, X.; Feng, Y.; Wang, C.; Wang, Y.; Ma, T.; Guo, L.; Zhang, Y. Unprecedented eighteen-faceted BiOCl with a ternary facet junction boosting cascade charge flow and photo-redox. Angew. Chem. Int. Ed. 2019, 58, 9517-9521.
doi: 10.1002/anie.201904921
Kuang, P.; Zhang, L.; Cheng, B.; Yu, J. Enhanced charge transfer kinetics of Fe2O3/CdS composite nanorod arrays using cobalt-phosphate as cocatalyst. Appl. Catal., B 2017, 218, 570-580.
doi: 10.1016/j.apcatb.2017.07.002
Ding, C.; Shi, J.; Wang, Z.; Li, C. Correction to photoelectrocatalytic water splitting: significance of cocatalysts, electrolyte, and interfaces. ACS Catal. 2017, 7, 1706-1706.
doi: 10.1021/acscatal.7b00155
Wang, S.; Wang, T.; Wang, X.; Deng, Q.; Yang, J.; Mao, Y.; Wang, G. Intercalation and elimination of carbonate ions of NiCo layered double hydroxide for enhanced oxygen evolution catalysis. Int. J. Hydrogen Energy 2020, 45, 12629-12640.
doi: 10.1016/j.ijhydene.2020.02.212
Song, F.; Hu, X. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481-16484.
doi: 10.1021/ja5096733
Batchellor, A. S.; Boettcher, S. W. Pulse-electrodeposited Ni–Fe (oxy)hydroxide oxygen evolution electrocatalysts with high geometric and intrinsic activities at large mass loadings. ACS Catal. 2015, 5, 6680-6689.
doi: 10.1021/acscatal.5b01551
Zhou, X.; Shen, X.; Xia, Z.; Zhang, Z.; Li, J.; Ma, Y.; Qu, Y. Hollow fluffy Co3O4 cages as efficient electroactive materials for supercapacitors and oxygen evolution reaction. ACS Appl. Mater. Interfaces 2015, 7, 20322-20331.
doi: 10.1021/acsami.5b05989
Xu, L.; Jiang, Q.; Xiao, Z.; Li, X.; Huo, J.; Wang, S.; Dai, L. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2016, 55, 5277-5281.
doi: 10.1002/anie.201600687
Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R.; Davis, R. C.; Bargar, J. R.; Norskov, J. K.; Nilsson, A.; Bell, A. T. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305-1313.
doi: 10.1021/ja511559d
Chen, J. Y. C.; Dang, L.; Liang, H.; Bi, W.; Gerken, J. B.; Jin, S.; Alp, E. E.; Stahl, S. S. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe4+ by mossbauer spectroscopy. J. Am. Chem. Soc. 2015, 137, 15090-15093.
doi: 10.1021/jacs.5b10699
Liu, H.; Wang, Y.; Lu, X.; Hu, Y.; Zhu, G.; Chen, R.; Ma, L.; Zhu, H.; Tie, Z.; Liu, J.; Jin, Z. The effects of Al substitution and partial dissolution on ultrathin NiFeAl trinary layered double hydroxide nanosheets for oxygen evolution reaction in alkaline solution. Nano Energy 2017, 35, 350-357.
doi: 10.1016/j.nanoen.2017.04.011
Xie, Y.; Wang, X.; Tang, K.; Li, Q.; Yan, C. Blending Fe3O4 into a Ni/NiO composite for efficient and stable bifunctional electrocatalyst. Electrochim. Acta 2018, 264, 225-232.
doi: 10.1016/j.electacta.2018.01.136
Ren, N.; Wang, A.; Gao, L.; Xin, L.; Lee, D. J.; Su, A. Bioaugmented hydrogen production from carboxymethyl cellulose and partially delignified corn stalks using isolated cultures. Int. J. Hydrogen Energy 2008, 33, 5250-5255.
doi: 10.1016/j.ijhydene.2008.05.020
Lee, D. K.; Choi, K. S. Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nature Energy 2018, 3, 53-60.
doi: 10.1038/s41560-017-0057-0
Qin, Q.; Cai, Q.; Li, J.; Jian, C.; Hong, W.; Liu, W. High quantum efficiency achieved on BiVO4 photoanode for efficient solar water oxidation. Solar Rrl 2019, 3.
Qin, Q.; Cai, Q.; Hong, W.; Jian, C.; Liu, W. Improved hole extraction and durability of BiVO4 photoanode for solar water splitting under extreme pH condition. Chem. Eng. J. 2020, 402.
Wei, S.; Wang, C.; Long, X.; Wang, T.; Wang, P.; Zhang, M.; Li, S.; Ma, J.; Jin, J.; Wu, L. An oxygen vacancy-modulated homojunction structural CuBi2O4 photocathodes for efficient solar water reduction. Nanoscale 2020, 12, 15193-15200.
doi: 10.1039/D0NR04473C
Palaniselvam, T.; Shi, L.; Mettela, G.; Anjum, D. H.; Li, R.; Katuri, K. P.; Saikaly, P. E.; Wang, P. Vastly enhanced BiVO4 photocatalytic OER performance by NiCoO2 as cocatalyst. Adv. Mater. Interfaces 2017, 4.
Yin, L.; Adler, I.; Tsang, T.; Matienzo, L. J.; Grim, S. O. Paramagnetism and shake-up satellites in X-ray photoelectron-spectra. Chem. Phys. Lett. 1974, 24, 81-84.
doi: 10.1016/0009-2614(74)80219-8
Zhou, L.; Zhao, C.; Giri, B.; Allen, P.; Xu, X.; Joshi, H.; Fan, Y.; Titova, L. V.; Rao, P. M. High light absorption and charge separation efficiency at low applied voltage from Sb-doped SnO2/BiVO4 core/shell nanorod-array photoanodes. Nano Lett. 2016, 16, 3463-3474.
doi: 10.1021/acs.nanolett.5b05200
Seabold, J. A.; Choi, K. S. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 2186-2192.
doi: 10.1021/ja209001d
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
Lina Wang , Hairu Wang , Qian Bu , Qiong Mei , Junbo Zhong , Bo Bai , Qizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139
Hailang Deng , Abebe Reda Woldu , Abdul Qayum , Zanling Huang , Weiwei Zhu , Xiang Peng , Paul K. Chu , Liangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892
Dong-Ling Kuang , Song Chen , Shaoru Chen , Yong-Jie Liao , Ning Li , Lai-Hon Chung , Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301
Zuyou Song , Yong Jiang , Qiao Gou , Yini Mao , Yimin Jiang , Wei Shen , Ming Li , Rongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793
Zimo Peng , Quan Zhang , Gaocan Qi , Hao Zhang , Qian Liu , Guangzhi Hu , Jun Luo , Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191
Cheng-Shuang Wang , Bing-Yu Zhou , Yi-Feng Wang , Cheng Yuan , Bo-Han Kou , Wei-Wei Zhao , Jing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
Kun Wang , Jiaxuan Qiu , Zefei Wu , Yang Liu , Yongqi Liu , Xiangpeng Chen , Bao Zang , Jianmei Chen , Yunchao Lei , Longlu Wang , Qiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Shudi Yu , Jie Li , Jiongting Yin , Wanyu Liang , Yangping Zhang , Tianpeng Liu , Mengyun Hu , Yong Wang , Zhengying Wu , Yuefan Zhang , Yukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068
Lu Qi , Zhaoyang Chen , Xiaoyu Luan , Zhiqiang Zheng , Yurui Xue , Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197
Limin Wang , Feiyi Huang , Xinyi Liang , Rajkumar Devasenathipathy , Xiaotian Liu , Qiulan Huang , Zhongyun Yang , Dujuan Huang , Xinglan Peng , Du-Hong Chen , Youjun Fan , Wei Chen . Photoelectric synergy induced synchronous functionalization of graphene and its applications in water splitting and desalination. Chinese Journal of Structural Chemistry, 2025, 44(2): 100501-100501. doi: 10.1016/j.cjsc.2024.100501
Liang Dong , Jingkuo Qu , Tuo Zhang , Guanghui Zhu , Ningning Ma , Chang Zhao , Yi Yuan , Xiangjiu Guan , Liejin Guo . MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(3): 110397-. doi: 10.1016/j.cclet.2024.110397
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141