Citation: Ji-Long LI, Wen MA, Jian-Ce JIN, Mei-Ling FENG, Xiao-Ying HUANG. Syntheses, Crystal Structures and Optoelectronic Properties of Two New Inorganic Thioantimonates[J]. Chinese Journal of Structural Chemistry, ;2021, 40(4): 443-452. doi: 10.14102/j.cnki.0254-5861.2011-3075 shu

Syntheses, Crystal Structures and Optoelectronic Properties of Two New Inorganic Thioantimonates

  • Corresponding author: Mei-Ling FENG, fml@fjirsm.ac.cn
  • Received Date: 21 December 2020
    Accepted Date: 21 January 2021

    Fund Project: the National Science Foundations of China 22076185the National Science Foundations of China 21771183the Natural Science Foundation of Fujian Province 2020J06033FJIRSM & IUE Joint Research Fund RHZX-2018-005

Figures(5)

  • Two new thioantimonates, (NH4)2Sb10S16 (1) and K1.4(NH4)0.6Sb10S16 (2), have been synthesized by solvothermal method with the yields of 80% and 85%, respectively. Single-crystal X-ray diffraction (SCXRD) study reveals that 1 crystallizes in the monoclinic space group of Pn with a = 8.1284(4), b = 19.4587(9), c = 9.1030(4) Å, β = 91.736(5)°, V = 1439.14(12) Å3, Z = 2, Dc = 4.077 g·cm-3, F(000) = 1576, μ = 10.389 mm-1, R = 0.0343 and wR = 0.0624 (I > 2σ(I)); 2 also crystallizes in the monoclinic space group of Pn with a = 8.0989(6), b = 19.3730(17), c = 9.0411(6) Å, β = 91.879(6)°, V = 1417.79(19) Å3, Z = 2, Dc = 4.207 g·cm-3, F(000) = 1598, μ = 10.748 mm-1, R = 0.0323 and wR = 0.0664 (I > 2σ(I)). The anionic frameworks of two compounds both feature two-dimensional (2D) [Sb10S16]n2n- layers. The stabilities and optoelectronic properties of 1 and 2 have been characterized. In particular, they are stable under acidic or alkaline conditions (pH = 0 or 12.5), showing excellent acid-based resistance.
  • 加载中
    1. [1]

      Zheng, N.; Bu, X. H.; Vu, H.; Feng, P. Y. Open-framework chalcogenides as visible-light photocatalysts for hydrogen generation from water. Angew. Chem. Int. Ed. 2005, 44, 5299−5303.  doi: 10.1002/anie.200500346

    2. [2]

      Yu, J. M.; Cai, T.; Ma, Z. J.; Wang, F.; Wang, H.; Yu, J. P.; Xiao, L. L.; Cheng, F. F.; Xiong, W. W. Using thiol-amine solvent mixture to prepare main group heterometallic chalcogenides. Inorg. Chim. Acta 2020, 509, 119698−7.  doi: 10.1016/j.ica.2020.119698

    3. [3]

      Feng, M. L.; Kong, D. N.; Xie, Z. L.; Huang, X. Y. Three-dimensional chiral microporous germanium antimonysulfide with ion-exchange properties. Angew. Chem. Int. Ed. 2008, 47, 8623−8626.  doi: 10.1002/anie.200803406

    4. [4]

      Ding, N.; Kanatzidis, M. G. Selective incarceration of caesium ions by Venus flytrap action of a flexible framework sulfide. Nat. Chem. 2010, 2, 187−191.  doi: 10.1038/nchem.519

    5. [5]

      Chung, I.; Kanatzidis, M. G. Metal chalcogenides: a rich source of nonlinear optical materials. Chem. Mater. 2014, 26, 849−869.  doi: 10.1021/cm401737s

    6. [6]

      Bag, S.; Trikalitis, P. N.; Chupas, P. J.; Armatas, G. S.; Kanatzidis, M. G. Porous semiconducting gels and aerogels from chalcogenide clusters. Science 2007, 317, 490−493.  doi: 10.1126/science.1142535

    7. [7]

      Zheng, N. F.; Bu, X. G.; Wang, B.; Feng, P. Y. Microporous and photoluminescent chalcogenide zeolite analogs. Science 2002, 298, 2366−2369.  doi: 10.1126/science.1078663

    8. [8]

      Xiong, W. W.; Miao, J. W.; Ye, K. Q.; Wang, Y.; Liu, B.; Zhang, Q. C. Threading chalcogenide layers with polymer chains. Angew. Chem. Int. Ed. 2015, 54, 546−550.

    9. [9]

      Wang, F.; Yang, D. D.; Liao, Y. Y.; Ma, Z. J.; Hu, B.; Wang, Y. Q.; Xiong, W. W.; Huang, X. Y. Synthesizing crystalline chalcogenidoarsenates in thiol-amine solvent mixtures. Inorg. Chem. 2020, 59, 2337−2347.  doi: 10.1021/acs.inorgchem.9b03165

    10. [10]

      Parise, J. B. An antimony sulfide with a two-dimensional, intersecting system of channels. Science 1991, 251, 293−294.  doi: 10.1126/science.251.4991.293

    11. [11]

      Berlepsch, P.; Miletich, R.; Armbruster, T. The crystal structures of synthetic KSb5S8 and (Tl0.598, K0.402)Sb5S8 and their relation to parapierrotite (TlSb5S8). Z. Kristallogr. 1999, 214, 57−63.

    12. [12]

      Zhou, J.; Dai, J.; Bian, G. Q.; Li, C. Y. Solvothermal synthesis of group 13~15 chalcogenidometalates with chelating organic amines. Coord. Chem. Rev. 2009, 253, 1221−1247.

    13. [13]

      Sheldrick, W. S.; Wachhold, M. Chalcogenidometalates of the heavier group 14 and 15 elements. Coord. Chem. Rev. 1998, 176, 211−322.  doi: 10.1016/S0010-8545(98)00120-9

    14. [14]

      Kiebach, R.; Nather, C.; Bensch, W. Solvothermal synthesis of (C6H17N3)Sb10S16: a new thioantimonate(Ⅲ) with an in-situ formed organic amine cation. Z. Naturforsch., B: Chem. Sci. 2004, 59, 1314−1319.  doi: 10.1515/znb-2004-11-1250

    15. [15]

      Vaqueiro, P.; Darlow, D. P.; Powell, A. V.; Chippindale, A. M. Solvothermal synthesis of novel antimony sulphides containing [Sb4S7]2- units. Solid State Ionics 2004, 172, 601−605.  doi: 10.1016/j.ssi.2004.01.064

    16. [16]

      Spetzler, V.; Nather, C.; Bensch, W. (C6N2H18)Sb4S7 a thioantimonate(Ⅲ) with a layered [Sb4S7]2- anion in the presence of a diprotonated amine as structure director. Z. Naturforsch., B: Chem. Sci. 2006, 61, 715−720.

    17. [17]

      Ko, Y. H.; Tan, K. M.; Parise, J. B.; Darovsky, A. Synthesis of a novel two-dimensional antimony sulfide, [C4H10N]2Sb8S13·0.15H2O, and its structure solution using synchrotron imaging plate data. Chem. Mater. 1996, 8, 493−496.  doi: 10.1021/cm950402j

    18. [18]

      Wang, X. Q.; Liebau, F. Synthesis and structure of (CH3NH3)2Sb8S13: a nanoporous thioantimonate(Ⅲ) with a 2-dimensional channel system. J. Solid State Chem. 1994, 111, 385−389.  doi: 10.1006/jssc.1994.1243

    19. [19]

      Spetzler, V.; Kiebach, R.; Nather, C.; Bensch, W. Two novel thioantimonates(Ⅲ) with the same stoichiometric Sb: S ratio but different crystal structures: solvothermal synthesis, crystal structures, thermal stability and spectroscopy of (C6N3H17)Sb6S10 and (C7N2H13)3Sb9S15. Z. Anorg. Allg. Chem. 2004, 630, 2398−2404.  doi: 10.1002/zaac.200400194

    20. [20]

      Sheldrick, W. S.; Hausler, H. J. On the preparation and crystal-structure of Cs3Sb5S9, Cs3Sb5Se9. Z. Anorg. Allg. Chem. 1988, 561, 149−156.

    21. [21]

      Zhu, A. M.; Jia, D. X.; Wang, P.; Zhang, Y. Solvothermal synthesis and crystal structure of a layered thioantimonate(Ⅲ) [C4H9NH3]2Sb4S7. Chin. J. Struc. Chem. 2007, 26, 1298−1302.

    22. [22]

      Mertz, J. L.; Fard, Z. H.; Malliakas, C. D.; Manos, M. J.; Kanatzidis, M. G. Selective removal of Cs+, Sr2+, and Ni2+ by K2xMgxSn3-xS6 (x = 0.5~1) (KMS-2) relevant to nuclear waste remediation. Chem. Mater. 2013, 25, 2116−2127.  doi: 10.1021/cm400699r

    23. [23]

      Manos, M. J.; Kanatzidis, M. G. Highly efficient and rapid Cs+ uptake by the layered metal sulfide K2xMnxSn3-xS6 (KMS-1). J. Am. Chem. Soc. 2009, 131, 6599−6607.  doi: 10.1021/ja900977p

    24. [24]

      Zhang, X.; Yi, N.; Hoffmann, R.; Zheng, C.; Lin, J.; Huang, F. Semiconductive K2MSbS3(SH) (M = Zn, Cd) featuring one-dimensional 1[ M2Sb2S6(SH2)]4- chains. Inorg. Chem. 2016, 55, 9742−9747.  doi: 10.1021/acs.inorgchem.6b01529

    25. [25]

      Wang, K. Y.; Liu, H. W.; Zhang, S.; Ding, D.; Cheng, L.; Wang, C. Selenidostannates and a silver selenidostannate synthesized in deep eutectic solvents: crystal structures and thermochromic study. Inorg. Chem. 2019, 58, 2942−2953.  doi: 10.1021/acs.inorgchem.8b02610

    26. [26]

      Wang, K. Y.; Ding, D.; Zhang, S.; Wang, Y.; Liu, W.; Wang, S.; Wang, S. H.; Liu, D.; Wang, C. Preparation of thermochromic selenidostannates in deep eutectic solvents. Chem. Commun. 2018, 54, 4806−4809.  doi: 10.1039/C8CC01614C

    27. [27]

      Cai, T.; Zhu, J. N.; Cheng, F. F.; Li, P.; Li, W.; Zhao, M. Y.; Xiong, W. W. Growing crystalline selenidostannates in deep eutectic solvent. Inorg. Chim. Acta 2019, 484, 214−218.  doi: 10.1016/j.ica.2018.09.046

    28. [28]

      Ma, Z. M.; Weng, F.; Wang, Q. R.; Tang, Q.; Zhang, G. H.; Zheng, C.; Han, R. P. S.; Huang, F. Q. Low temperature synthesis and structures of alkaline earth metal chalcogenides Ba3Cu4SbS6OH, BaCuSbS3 and BaCu2S2. RSC Adv. 2014, 4, 28937−28940.  doi: 10.1039/C3RA46878J

    29. [29]

      Sheldrick, W. S.; Wachhold, M. Solventothermal synthesis of solid-state chalcogenidometalates. Angew. Chem. Int. Ed. 1997, 36, 207−224.

    30. [30]

      Du, K. Z.; Feng, M. L.; Li, L. H.; Hu, B.; Ma, Z. J.; Wang, P.; Li, J. R.; Wang, Y. L.; Zou, G. D.; Huang, X. Y. [Ni(phen)3]2Sb18S29: a novel three-dimensional framework thioantimonate(Ⅲ) templated by [Ni(phen)3] complexes. Inorg. Chem. 2012, 51, 3926−3928.  doi: 10.1021/ic202246q

    31. [31]

      Yang, D. D.; Li, W.; Xiong, W. W.; Li, J. R.; Huang, X. Y. Ionothermal synthesis of discrete supertetrahedral Tn (n = 4, 5) clusters with tunable components, band gaps, and fluorescence properties. Dalton Trans. 2018, 47, 5977−5984.  doi: 10.1039/C8DT00524A

    32. [32]

      Cordier, G.; Schwidetzky, C.; Schafer, H. New SbS2 strings in the BaSb2S4 structure. J. Solid State Chem. 1984, 54, 84−88.  doi: 10.1016/0022-4596(84)90134-8

    33. [33]

      Cordier, G.; Schafer, H.; Schwidetzky, C. The crystal-structure of SrSb4S7·6H2O. Z. Naturforsch., B: Chem. Sci. 1984, 39, 131−134.  doi: 10.1515/znb-1984-0201

    34. [34]

      Graf, H. A.; Schafer, H. Preparation and crystal-structure of K2Sb4S7. Z. Naturforsch. B Chem. Sci. 1972, B27, 735−739.

    35. [35]

      Kiebach, R.; Nather, C.; Sebastian, C. P.; Mosel, B. D.; Pottgen, R.; Bensch, W. [C6H21N4][Sb9S14O]: solvothermal synthesis, crystal structure and characterization of the first non-centrosymmetric open Sb-S-O framework containing the new [SbS2O] building unit. J. Solid State Chem. 2006, 179, 3082−3086.

    36. [36]

      Powell, A. V.; Boissiere, S.; Chippindale, A. M. [(NH3CH2CH2CH2NH2CH2)2]0.5Sb7S11: a new two-dimensional antimony sulfide with antimony-antimony bonding. Chem. Mater. 2000, 12, 182−187.  doi: 10.1021/cm990526m

    37. [37]

      Dittmar, G.; Schafer, H. Preparation and crystal-structure of Cs2Sb4S7. Z. Anorg. Allg. Chem. 1978, 441, 98−102.  doi: 10.1002/zaac.19784410112

    38. [38]

      Puls, A.; Nather, C.; Bensch, W. 2-Ammoniopropylammonium dodeca-mu-sulfido-tetrasulfidodecaantimony. Acta Crystallogr., Sect. E: Crystallogr. Commun. 2006, 62, M674−M676.  doi: 10.1107/S0108270106041242

    39. [39]

      Wang, X. Q. Synthesis and crystal-structure of a new microporous thioantimonate(Ⅲ) [H3N(CH2)3NH3]Sb10S16. Eur. J. Solid State Inorg. Chem. 1995, 32, 303−312.

    40. [40]

      Zhang, M.; Sheng, T. L.; Huang, X. H.; Fu, R. B.; Wang, X.; Hu, S. M.; Xiang, S. C.; Wu, X. T. Solvothermal synthesis, crystal structure, and thermal stability of three-layered thioantimonate(Ⅲ) complexes: [Ni(C3H10N2)3]Sb4S7, [C4H14N2]Sb8S13·H2O, and [C6H18N2]Sb10S16·H2O. Eur. J. Inorg. Chem. 2007, 1606−1612.

    41. [41]

      Dittmar, G.; Schafer, H. Preparation and crystal-structure of (NH4)2Sb4S7. Z. Anorg. Allg. Chem. 1977, 437, 183−187.

    42. [42]

      Volk, K.; Bickert, P.; Kolmer, R.; Schafer, H. Preparation and crystal-structure of NH4SbS2. Z. Naturforsch., B: Chem. Sci. 1979, 34, 380−382.  doi: 10.1515/znb-1979-0304

    43. [43]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2015, 71, 3−8.  doi: 10.1107/S2053229614024218

    44. [44]

      Luo, Q. P.; Yu, X. Y.; Lei, B. X.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. J. Phys. Chem. C 2012, 116, 8111−8117.  doi: 10.1021/jp2113329

    45. [45]

      Li, G.; Miao, J. W.; Cao, J.; Zhu, J.; Liu, B.; Zhang, Q. C. Preparation and photoelectrochemical behavior of 1,4,6,8,11,13-hexazapentacene (HAP). Chem. Commun. 2014, 50, 7656−7658.  doi: 10.1039/C4CC02908A

    46. [46]

      Zhang, Q. C.; Liu, Y.; Bu, X. H.; Wu, T.; Feng, P. Y. A rare (3, 4)-connected chalcogenide superlattice and its photoelectric effect. Angew. Chem. Int. Ed. 2008, 47, 113−116.  doi: 10.1002/anie.200703442

  • 加载中
    1. [1]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    2. [2]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    3. [3]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    4. [4]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    5. [5]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    8. [8]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    9. [9]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    10. [10]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    11. [11]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    12. [12]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    13. [13]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    14. [14]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    15. [15]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    16. [16]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    17. [17]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    18. [18]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    19. [19]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    20. [20]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

Metrics
  • PDF Downloads(1)
  • Abstract views(276)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return