Citation: Lao-Bang WANG, Ji-Jiang WANG, Long TANG, Xiao WANG, Xiang-Yang HOU, Er-Lin YUE, Yu-Qi ZHANG. Two Co(Ⅱ) Complexes Constructed from 1-(3, 5-Dicarboxybenzyl)-3, 5-pyrazole Dicarboxylic Acid: Syntheses, Structures and Magnetic Properties[J]. Chinese Journal of Structural Chemistry, ;2021, 40(7): 885-891. doi: 10.14102/j.cnki.0254-5861.2011-3071 shu

Two Co(Ⅱ) Complexes Constructed from 1-(3, 5-Dicarboxybenzyl)-3, 5-pyrazole Dicarboxylic Acid: Syntheses, Structures and Magnetic Properties

  • Corresponding author: Ji-Jiang WANG, yadxwjj@126.com Long TANG, ydtanglong@163.com
  • Received Date: 17 December 2020
    Accepted Date: 10 March 2021

    Fund Project: the National Natural Science Foundation of China 21373178

Figures(7)

  • Two new complexes [Co2(L)(4, 4´-bip)(H2O)3]n (1) and {[Co(L´)2(phen)]·2H2O)}n (2) (H4L = 1-(3, 5-dicarboxybenzyl)-3, 5-pyrazole dicarboxylic acid, H3L´ = 1-(3, 5-dicarboxybenzyl)-3-pyrazole carboxylic acid, 4, 4´-bip = 4, 4´-bis(1-imidazolyl)biphenyl, phen = 1, 10-phenanthroline) were synthesized. Complexes 1 and 2 have been characterized by IR spectrography, X-ray single-crystal diffraction, elemental analysis and thermogravimetry. 1 crystallizes in monoclinic system, space group P21/c. Complex 2 crystallizes in monoclinic system, space group I2/a. It is remarkable that in situ hydrothermal decarboxylation was observed during preparing complex 2. In addition, magnetic analysis indicates that antiferromagnetic interaction exists among Co(Ⅱ) ions in complexes 1 and 2.
  • 加载中
    1. [1]

      Rouffet, M.; de Oliveira, C. A. F.; Udi, Y.; Agrawal, A.; Sagi, I.; McCammon, J. A.; Cohen, S. M. From sensors to silencers: quinoline- and benzimidazole-sulfonamides as inhibitors for zinc proteases. J. Am. Chem. Soc. 2010, 132, 8232–8233.  doi: 10.1021/ja101088j

    2. [2]

      Liu, H. Y.; Wu, H.; Ma, J. F.; Liu, Y. Y.; Liu, B.; Yang, J. Syntheses, structures, and photoluminescence of zinc(Ⅱ) coordination polymers based on carboxylates and flexible bis-[(pyridyl)-benzimidazole] ligands. Cryst. Growth Des. 2010, 10, 4795–4805.  doi: 10.1021/cg100688z

    3. [3]

      Xue, F.; Kumar, P.; Xu, W. Q.; Mkhoyan, K. A.; Tsapatsis, M. Direct synthesis of 7 nm-thick zinc(Ⅱ)-benzimidazole-acetate metal-organic framework nanosheets. Chem. Mater. 2018, 30, 69–73.  doi: 10.1021/acs.chemmater.7b04083

    4. [4]

      Yang, F.; Xu, G.; Dou, Y. B.; Wang, B.; Zhang, H.; Wu, H.; Zhou, W.; Li, J. R.; Chen, B. L. A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction. Nat. Energy 2017, 2, 877−883.  doi: 10.1038/s41560-017-0018-7

    5. [5]

      Wang, Y. L.; Han, C. B.; Zhang, Y. Q.; Liu, Q. Y.; Liu, C. M.; Yin, S. G. Fine-tuning ligand to modulate the magnetic anisotropy in a carboxylate-bridged Dy2 single-molecule magnets system. Inorg. Chem. 2016, 55, 5578–5584.  doi: 10.1021/acs.inorgchem.6b00653

    6. [6]

      Horike, S.; Umeyama, D.; Kitagawa, S. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. \ Chem. Res. 2013, 46, 2376–2384.  doi: 10.1021/ar300291s

    7. [7]

      Zhao, M.; Ou, S.; Wu, C. D. Porous metal-organic frameworks for heterogeneous biomimetic catalysis. Chem. Res. 2014, 47, 1199–1207.  doi: 10.1021/ar400265x

    8. [8]

      Kitagawa, S.; Kitaura, R.; Noro, R. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375.  doi: 10.1002/anie.200300610

    9. [9]

      He, Y. B.; Zhou, W.; Qian, G. D.; Chen, B. L. Methane storage in metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 5657−5678.  doi: 10.1039/C4CS00032C

    10. [10]

      Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.  doi: 10.1039/C6CS00930A

    11. [11]

      Lin, Z. T.; Wang, Y. L.; Liu, Q. Y. Crystal structure and luminescence of a Cd(Ⅱ) complex based on the 3, 3΄, 5, 5΄-tetrafluorobiphenyl-4, 4΄-dicarboxylate and adenine ligands. Chin. J. Struct. Chem. 2020, 11, 2041−2045.

    12. [12]

      Zhang, N.; Guo, Y. H.; Yu, Y. Z.; Wang, Z.; Niu, Y. S.; Wu, X. L. Solvothermal synthesis, crystal Structure and luminescence property of a 1D silver(Ⅰ) coordination polymer. Chin. J. Struct. Chem. 2020, 11, 2009−2015.

    13. [13]

      Verma, P.; Singh, U. P.; Butcher, R. Luminescent metal organic frameworks for sensing and gas adsorption studies. CrystEngComm. 2019, 21, 5470–5481.  doi: 10.1039/C9CE00732F

    14. [14]

      Wang, J. J.; Cao, Z.; Wang, X.; Tang, L.; Hou, X. Y.; Ju, P.; Ren, Y. X.; Chen, X. L.; Zhang, Y. Q. A novel 3D Cd(Ⅱ) coordination polymer generated via in situ ligand synthesis involving C–O esterbond formation. RSC Adv. 2019, 9, 307–312  doi: 10.1039/C8RA06112B

    15. [15]

      Liu, C. B.; Li, Q.; Wang, X.; Che, G. B.; Zhang, X. J. A series of lanthanide(Ⅲ) coordination polymers derived via in situ hydrothermal decarboxylation of quinoline-2, 3-dicarboxylic acid. Inorg. Chem. Commun. 2014, 39, 56–60.  doi: 10.1016/j.inoche.2013.10.050

    16. [16]

      Yang, A. H.; Zou, J. Y.; Wang, W. M.; Shi, X. Y.; Gao, H. L.; Cui, J. Z.; Zhao, B. Two three-dimensional lanthanide frameworks exhibiting luminescence increases upon dehydration and novel water layer involving in situ decarboxylation. Inorg. Chem. 2014, 53, 7092–7100.  doi: 10.1021/ic402803s

    17. [17]

      Sheldrick, G. M. SHELXS-2014/7 and SHELXL-2014/7 program for solution and refinement of crystal structures. Institute for Inorganic Chemistry. University of Göttingen, Göttingen, Germany 2014.

    18. [18]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.

    19. [19]

      Ishida, T.; Kawakami, T.; Mitsubori, S.; Nogami, T.; Yamaguchi, K.; Iwamura, H. Antiferromagnetic coupling of transition metal spins across pyrimidine and pyrazine bridges in dinuclear manganese(Ⅱ), cobalt(Ⅱ), nickel(Ⅱ) and copper(Ⅱ) 1, 1, 1, 5, 5, 5-hexafluoropentane-2, 4-dionate complexes. J. Chem. Soc. Dalton Trans. 2002, 3177–3186.

  • 加载中
    1. [1]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    2. [2]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    3. [3]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    4. [4]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    5. [5]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    6. [6]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    7. [7]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    8. [8]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    9. [9]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    10. [10]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    15. [15]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    16. [16]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    17. [17]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    18. [18]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    19. [19]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    20. [20]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

Metrics
  • PDF Downloads(1)
  • Abstract views(196)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return