Citation: Yang ZHANG, Zhi-Gang ZHAO, Mei-Ying XIE, Li-Yan XUE, Shu-Wen YU, Zheng-Ming JIANG, Zhi-Heng SHAO, Kai-Xian WANG, Fan YANG. New 'Non-phosphorous' and Efficient Diglycolamide-acid Based Extraction Systems[J]. Chinese Journal of Structural Chemistry, ;2020, 39(12): 2139-2147. doi: 10.14102/j.cnki.0254-5861.2011-3026 shu

New 'Non-phosphorous' and Efficient Diglycolamide-acid Based Extraction Systems

  • Corresponding author: Yang ZHANG, yzhang@fjirsm.ac.cn Fan YANG, fanyang2013@fjirsm.ac.cn
  • Received Date: 3 November 2020
    Accepted Date: 19 November 2020

    Fund Project: the national key research and development program of China 2019YFC0605000the strategic priority research program of the Chinese academy of sciences XDA21000000the FJIRSM&IUE joint research fund RHZX-2018-001science and technology service network initiative 2018T3025the 2020 opening foundation of state key laboratory of Baiyunobo rare earth resource researches and comprehensive utilization 2020Z2117

Figures(8)

  • In this paper, we briefly reviewed the new non-phosphorous extraction systems proposed according to the different applicational ends. These systems were established by choosing the suitably modified chemical group and the corresponding substrate with unique chemical/physical properties. The guiding principle for the foundation of these new systems was to combine the advantages of the substrate and functions of the modified chemical group, majorly the diglycolamide-acid. The induced physical/chemical properties of the substrate and the functions of modified moieties had the potential to import unique traits to the as-founded adsorbent, establishing a task-tailored bi-/multi-functional system. We believe the new systems had the potential to create new adsorption/desorption extraction/bask-extraction paradigms to improve the selectivity and capacity of the extraction/adsorption process, as well as to be more time-efficient and environmentally friendly.
  • 加载中
    1. [1]

      Ansari, S. A.; Pathak, P.; Mohapatra, P. K.; Manchanda, V. K. Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem. Rev. 2012, 112, 1751–1772.  doi: 10.1021/cr200002f

    2. [2]

      Sasaki, Y.; Sugo, Y.; Suzuki, S.; Tachimori, S. The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3-n-dodecane system. Solvent Extr. Ion Exch. 2001, 19, 91–103.  doi: 10.1081/SEI-100001376

    3. [3]

      Yang, F.; Kubota, F.; Baba, Y.; Kamiya, N.; Goto, M. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. J. Hazard. Mater. 2013, 254, 79–88.

    4. [4]

      Hidayah, N. N.; Abidin, S. Z. The evolution of mineral processing in extraction of rare earth elements using solid-liquid extraction over liquid-liquid extraction: a review. Miner. Eng. 2017, 112, 103–113.  doi: 10.1016/j.mineng.2017.07.014

    5. [5]

      Bai, R.; Yang, F.; Zhang, Y.; Zhao, Z.; Liao, Q.; Chen, P.; Zhao, P.; Guo, W.; Cai, C. Preparation of elastic diglycolamic-acid modified chitosan sponges and their application to recycling of rare-earth from waste phosphor powder. Carbohydr. Polym. 2018, 190, 255–261.  doi: 10.1016/j.carbpol.2018.02.059

    6. [6]

      Gok, C. Neodymium and samarium recovery by magnetic nano-hydroxyapatite. J. Radioanal. Nucl. Chem. 2014, 301, 641–651.  doi: 10.1007/s10967-014-3193-z

    7. [7]

      Galhoum, A. A.; Mahfouz, M. G.; Abdel-Rehem, S. T.; Gomaa, N. A.; Atia, A. A.; Vincent, T.; Guibal, E. Diethylenetriamine-functionalized chitosan magnetic nano-based particles for the sorption of rare earth metal ions [Nd(Ⅲ), Dy(Ⅲ) and Yb(Ⅲ)]. Cellulose. 2015, 22, 2589–2605.  doi: 10.1007/s10570-015-0677-0

    8. [8]

      Tu, Y. J.; Johnston, C. T. Rapid recovery of rare earth elements in industrial wastewater by CuFe2O4 synthesized from Cu sludge. J. Rare. Earth. 2018, 36, 513–520.  doi: 10.1016/j.jre.2017.11.009

    9. [9]

      Tu, Y. J.; Lo, S. C.; You, C. F. Selective and fast recovery of neodymium from seawater by magnetic iron oxide Fe3O4. Chem. Eng. J. 2015, 262, 966–972.  doi: 10.1016/j.cej.2014.10.025

    10. [10]

      Zheng, X.; Liu, E.; Zhang, F.; Yan, Y.; Pan, J. Efficient adsorption and separation of dysprosium from NdFeB magnets in an acidic system by ion imprinted mesoporous silica sealed in a dialysis bag. Green. Chem. 2016, 18, 5031–5040.  doi: 10.1039/C6GC01426G

    11. [11]

      Chen, P.; Yang, F.; Liao, Q.; Zhao, Z.; Zhang, Y.; Zhao, P.; Guo, W.; Bai, R. Recycling and separation of rare earth resources lutetium from LYSO scraps using the diglycol amic acid functional XAD-type resin. Waste Manage. 2017, 62, 222.  doi: 10.1016/j.wasman.2017.02.020

    12. [12]

      Bai, R. X.; Zhang, Y.; Zhao, Z. G.; Liao, Q. X.; Chen, P.; Zhao, P. P.; Guo, W. H.; Yang, F.; Li, L. C. Rapid and highly selective removal of lead in simulated wastewater of rare-earth industry using diglycolamic-acid functionalized magnetic chitosan adsorbents. J. Ind. Eng. Chem. 2018, 59, 416–424.  doi: 10.1016/j.jiec.2017.10.053

    13. [13]

      Zhao, Z.; Chen, P.; Yang, F.; Liao, Q.; Zhang, Y.; Zhao, P.; Guo, W.; Bai, R.; Cai, C. Efficient diglycolamic acid extractant for separating and recycling Au(Ⅲ). Miner. Eng. 2020, 150, 106254.  doi: 10.1016/j.mineng.2020.106254

    14. [14]

      Bai, R.; Yang, F.; Meng, L.; Zhao, Z.; Guo, W.; Cai, C.; Zhang, Y. Polyethylenimine functionalized and scaffolded graphene aerogel and the application in the highly selective separation of thorium from rare earth. Mater. Design. 2020, 109195.

    15. [15]

      Zhang, H.; Yang, F.; Bai, R.; Zhao, Z.; Cai, C.; Li, J.; Ma, Y. Facile preparation of Ce enhanced vinyl-functionalized silica aerogel-like monoliths for selective separation of radioactive thorium from monazite. Mater. Design 2020, 186, 108333.  doi: 10.1016/j.matdes.2019.108333

    16. [16]

      Zhang, H.; Yang, F.; Lu, C.; Du, C.; Bai, R.; Zeng, X.; Zhao, Z.; Cai, C.; Li, J. Effective decontamination of 99TcO4/ReO4 from Hanford low-activity waste by functionalized graphene oxide-chitosan sponges. Environ. Chem. Lett. 2020, 18, 1379–1388.  doi: 10.1007/s10311-020-01005-w

    17. [17]

      Guo, W.; Zhang, J.; Yang, F.; Tan, F.; Zhao, Z. Highly efficient and selective recovery of gallium achieved on an amide-functionalized cellulose. Sep. Purif. Technol. 2019, 237, 116355.

    18. [18]

      Cai, C.; Yang, F.; Zhao, Z.; Liao, Q.; Bai, R.; Guo, W.; Chen, P.; Zhang, Y.; Zhang, H. Promising transport and high-selective separation of Li(Ⅰ) from Na(Ⅰ) and K(Ⅰ) by a functional polymer inclusion membrane (PIM) system. J. Membr. Sci. 2019, 579, 1–10.  doi: 10.1016/j.memsci.2019.02.046

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    3. [3]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    4. [4]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    5. [5]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    6. [6]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    7. [7]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    8. [8]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    9. [9]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    10. [10]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    11. [11]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    12. [12]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    13. [13]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    14. [14]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    15. [15]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    16. [16]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    17. [17]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    18. [18]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    19. [19]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    20. [20]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

Metrics
  • PDF Downloads(1)
  • Abstract views(200)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return