Citation: Zhi-Hua FU, Gang XU. Two-dimensional Organic Metal Chalcogenides[J]. Chinese Journal of Structural Chemistry, ;2020, 39(12): 2131-2138. doi: 10.14102/j.cnki.0254-5861.2011-3023 shu

Two-dimensional Organic Metal Chalcogenides

  • Corresponding author: Gang XU, gxu@fjirsm.ac.cn
  • Received Date: 3 November 2020
    Accepted Date: 27 November 2020

    Fund Project: the NSF of China and the Strategic Priority Research Program of CAS XDB20000000

Figures(5)

  • Inorganic two-dimensional (2D) materials have attracted tremendous interests recently. Controlled functionalization of 2D materials can achieve additional functions and properties, but usually suffers from less modification ratio, poor controllability, defects and so on. 2D organic metal chalcogenide (OMC) materials with periodically arranged organic functional group between the inorganic analogues layers offer opportunities to develop adjustable electrical properties and extended applications. In this mini-review, we will provide an overview of the composition and preparation, band gap engineering, and conductivity modulation of the serial OMC materials and illustrate the application investigation such as biomimetic catalysis, photodetecting and chemiresistive gas sensing.
  • 加载中
    1. [1]

      Sun, Y.; Gao, S.; Lei, F.; Xiao, C.; Xie, Y. Ultrathin two-dimensional inorganic materials: new opportunities for solid state nanochemistry. Acc. Chem. Res. 2015, 48, 1, 3‒12.  doi: 10.1021/ar500164g

    2. [2]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.  doi: 10.1126/science.1102896

    3. [3]

      Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.  doi: 10.1038/nchem.1589

    4. [4]

      Kou, L.; Ma, Y.; Sun, Z.; Heine, T.; Chen, C. Two-dimensional topological insulators: progress and prospects. J. Phys. Chem. Lett. 2017, 8, 1905–1919.  doi: 10.1021/acs.jpclett.7b00222

    5. [5]

      Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.  doi: 10.1038/nnano.2010.172

    6. [6]

      Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.  doi: 10.1126/science.1150878

    7. [7]

      Yavari, F.; Kritzinger, C.; Gaire, C.; Song, L.; Gulapalli, H.; Borca‐Tasciuc, T.; Ajayan, P.; Koratkar, N. Tunable bandgap in graphene by the controlled adsorption of water molecules. Small 2010, 6, 2535–2538.  doi: 10.1002/smll.201001384

    8. [8]

      Balog, R.; Jørgensen, B.; Nilsson, L.; Andersen, M.; Rienks, E.; Bianchi, M.; Fanetti, M.; Lægsgaard, E.; Baraldi, A.; Lizzit, S.; Sljivancanin, Z.; Besenbacher, F.; Hammer, B.; Pedersen, T.; Hofmann, P.; Hornekær, L. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 2010, 9, 315–319.  doi: 10.1038/nmat2710

    9. [9]

      Kim, J.; Baik, S. S.; Ryu, S. H.; Sohn, Y.; Park, S.; Park, B. G.; Denlinger, J.; Yi, Y.; Choi, H. J.; Kim, K. S. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 2015, 349, 723–726.  doi: 10.1126/science.aaa6486

    10. [10]

      Zhou, S. Y.; Siegel, D. A.; Fedorov, A. V.; Lanzara, A. Metal to insulator transition in epitaxial graphene induced by molecular doping. Phys. Rev. Lett. 2008, 101, 086402–4.  doi: 10.1103/PhysRevLett.101.086402

    11. [11]

      Zhang, F.; Lu, Y.; Schulman, D.; Zhang, T.; Fujisawa, K.; Lin, Z.; Lei, Y.; Elias, A. L.; Das, S.; Sinnott, S.; Terrones, M. Carbon doping of WS2 monolayers: bandgap reduction and p-type doping transport. Sci. Adv. 2019, 5, eaav5003–8.  doi: 10.1126/sciadv.aav5003

    12. [12]

      Xu, C.; Peng, S.; Tan, C.; Ang, H.; Tan, H.; Zhang, H.; Yan, Q. Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution. J. Mater. Chem. A 2014, 2, 5597–5601.  doi: 10.1039/C4TA00458B

    13. [13]

      Chou, S.; De, M.; Kim, J.; Byun, S.; Dykstra, C.; Yu, J.; Huang, J.; Dravid, V. Ligand conjugation of chemically exfoliated MoS2. J. Am. Chem. Soc. 2013, 135, 4584–4587.  doi: 10.1021/ja310929s

    14. [14]

      Benson, E.; Zhang, H.; Schuman, S.; Nanayakkara, S.; Bronstein, N.; Ferrere, S.; Blackburn, J.; Miller, E. Balancing the hydrogen evolution reaction, surface energetics, and stability of metallic MoS2 nanosheets via covalent functionalization. J. Am. Chem. Soc. 2018, 140, 441–450.  doi: 10.1021/jacs.7b11242

    15. [15]

      Dai, L. Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res. 2013, 46, 31–42.  doi: 10.1021/ar300122m

    16. [16]

      Chen, X.; Berner, N.; Backes, C.; Duesberg, G.; McDonald, A. Functionalization of two-dimensional MoS2: on the reaction between MoS2 and organic thiols. Angew. Chem. Int. Ed. 2016, 55, 5803–5808.  doi: 10.1002/anie.201510219

    17. [17]

      Presolski, S.; Wang, L.; Loo, A. H.; Ambrosi, A.; Lazar, P.; Ranc, V.; Otyepka, M.; Zboril, R.; Tomanec, O.; Ugolotti, J.; Sofer, Z.; Pumera, M. Functional nanosheet synthons by covalent modification of transition-metal dichalcogenides. Chem. Mater. 2017, 29, 2066–2073.  doi: 10.1021/acs.chemmater.6b04171

    18. [18]

      Knirsch, K.; Berner, N.; Nerl, H.; Cucinotta, C.; Gholamvand, Z.; McEvoy, N.; Wang, Z.; Abramovic, I.; Vecera, P.; Halik, M.; Sanvito, S.; Duesberg, G.; Nicolosi, V.; Hauke, F.; Hirsch A.; Coleman, J.; Backes, C. Basal-plane functionalization of chemically exfoliated molybdenum disulfide by diazonium salts. ACS Nano 2015, 9, 6018–6030.  doi: 10.1021/acsnano.5b00965

    19. [19]

      Voiry, D.; Goswami, A.; Kappera, R.; Silva, C. C. C.; Kaplan, D.; Fujita, T.; Chen, M.; Asefa, T.; Chhowalla, M. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 2015, 7, 45–49.  doi: 10.1038/nchem.2108

    20. [20]

      Guo, G.; Yao, Y.; Wu, C.; Huang, J.; Studies on the structure-sensitive functional materials. Prog. Chem. 2001, 13, 151–155.

    21. [21]

      Guo, S.; Chi, Y.; Guo, G. Recent achievements on middle and far-infrared second-order nonlinear optical materials. Coord. Chem. Rev. 2017, 335, 44–57.  doi: 10.1016/j.ccr.2016.12.013

    22. [22]

      Ma, B.; Martín, C.; Kurapati, R.; Bianco, A. Degradation-by-design: how chemical functionalization enhances the biodegradability and safety of 2D materials. Chem. Soc. Rev. 2020, 49, 6224–6247.  doi: 10.1039/C9CS00822E

    23. [23]

      Li, Y.; Jiang, X.; Fu, Z.; Huang, Q.; Wang, G. E.; Deng, W. H.; Wang, C.; Li, Z.; Yin, W.; Chen, B.; Xu, G. Coordination assembly of 2D ordered organic metal chalcogenides with widely tunable electronic band gaps. Nat. Commun. 2020, 11, 261–9.  doi: 10.1038/s41467-019-14136-8

    24. [24]

      Azadmanjiri, J.; Kumar, P.; Srivastava, V.; Sofer, Z. Surface functionalization of 2D transition metal oxides and dichalcogenides via covalent and non-covalent bonding for sustainable energy and biomedical applications. ACS Appl. Nano Mater. 2020, 3, 3116–3143.  doi: 10.1021/acsanm.0c00120

    25. [25]

      Thurakkal, S.; Zhang, X. Recent advances in chemical functionalization of 2D black phosphorous nanosheets. Adv. Sci. 2019, 1902359–28.

    26. [26]

      Ashworth, C. 2D materials: the thick and the thin. Nat. Rev. Mater. 2018, 3, 18019–1.  doi: 10.1038/natrevmats.2018.19

    27. [27]

      Gao, E.; Xu, Z. Thin-shell thickness of two-dimensional materials. J. Appl. Mech. 2015, 82, 121012–4.  doi: 10.1115/1.4031568

    28. [28]

      Zhang, W.; Li, X.; Jiang, T.; Song, J.; Lin, Y.; Zhu, L.; Xu, X. CVD synthesis of Mo(1-x)WxS2 and MoS2(1-x)Se2x alloymonolayers aimed at tuning the bandgap of molybdenum disulfide. Nanoscale 2015, 7, 13554–13560.  doi: 10.1039/C5NR02515J

    29. [29]

      Pedersen, K. S.; Perlepe, P.; Aubrey, M. L.; Woodruff, D. N.; Reyes-Lillo, S. E.; Reinholdt, A.; Voigt, L.; Li, Z.; Borup, K.; Rouzières, M.; Samohvalov, D.; Wilhelm, F.; Rogalev, A.; Neaton, J. B.; Long, J. R.; Clérac, R. Formation of the layered conductive magnet CrCl2(pyrazine)2 through redox-active coordination chemistry. Nat. Chem. 2018, 10, 1056–1061.  doi: 10.1038/s41557-018-0107-7

    30. [30]

      Kawazoe, H.; Yasukawa, M.; Hyodo, H.; Kurita, M.; Yanagi, H.; Hosono, H. P-type electrical conduction in transparent thin films of CuAlO2. Nature 1997, 389, 939–942.  doi: 10.1038/40087

    31. [31]

      Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 2012, 112, 2208–2267.  doi: 10.1021/cr100380z

    32. [32]

      Zaumseil, J.; Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 2007, 107, 1296–1323.  doi: 10.1021/cr0501543

    33. [33]

      Ionescu, A. M.; Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 2011, 479, 329–337.  doi: 10.1038/nature10679

    34. [34]

      Lien, C. C.; Wu, C. Y.; Li, Z. Q.; Lin, J. J. Electrical conduction processes in ZnO in a wide temperature range 20~500 K. J. Appl. Phys. 2011, 110, 063706–8.  doi: 10.1063/1.3638120

    35. [35]

      Xu, J.; Chang, Y.; Gan, L.; Ma, Y.; Zhai, T. Ultrathin single-crystalline boron nanosheets for enhanced electro-optical performances. Adv. Sci. 2015, 2, 1500023–11.  doi: 10.1002/advs.201500023

    36. [36]

      Huang, Y. L.; Chiu, S. P.; Zhu, Z. X.; Li, Z. Q.; Lin, J. J. Variable-range-hopping conduction processes in oxygen deficient polycrystalline ZnO films. J. Appl. Phys. 2010, 107, 063715–6.  doi: 10.1063/1.3357376

    37. [37]

      Wei, H.; Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–36093.  doi: 10.1039/c3cs35486e

    38. [38]

      Huang, Y.; Ren, J.; Qu, X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.  doi: 10.1021/acs.chemrev.8b00672

    39. [39]

      Chen, Q.; Liu, M.; Zhao, J.; Peng, X.; Chen, X.; Mi, N.; Yin, B.; Li, H.; Zhang, Y.; Yao, S. Water-dispersible silicon dots as a peroxidase mimetic for the highly-sensitive colorimetric detection of glucose. Chem. Commun. 2014, 50, 6771–36774.  doi: 10.1039/C4CC01703J

    40. [40]

      Zhang, J.; Liu, J. Light-activated nanozymes: catalytic mechanisms and applications. Nanoscale 2020, 12, 2914–2923.  doi: 10.1039/C9NR10822J

    41. [41]

      Tan, C.; Cao, X.; Wu, X. J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G. H.; Sindoro, M.; Zhang, H. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 9, 6225–6331.

    42. [42]

      Dong, Y.; Zhang, H. G.; Rahman, Z. U.; Su, L.; Chen, X.; Hu, J.; Chen, X. Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 2012, 4, 3969–3976.  doi: 10.1039/c2nr12109c

    43. [43]

      Tian, J.; Liu, Q.; Asiri, A. M.; Qusti, A. H.; Al-Youbicd, A. O.; Sun, X. Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 2013, 5, 11604–11609.  doi: 10.1039/c3nr03693f

    44. [44]

      Li, Y.; Shu, J.; Huang, Q.; Chiranjeevulu, K.; Kumar, N.; Wang, G. E.; Deng, W. H.; Tang, D.; Xu, G. 2D metal chalcogenides with surfaces fully covered with an organic "promoter" for high-performance biomimetic catalysis. Chem. Commun. 2019, 55, 10444–10447.  doi: 10.1039/C9CC03443A

    45. [45]

      Liu, L.; Shi, Y.; Yang, Y.; Li, M.; Long, Y.; Huang, Y.; Zheng, H. Fluorescein as an artificial enzyme to mimic peroxidase. Chem. Commun. 2016, 52, 13912−13915.  doi: 10.1039/C6CC07896F

    46. [46]

      Sun, C.; Sun, C.; Huang, Z.; Liu, L.; Li, M.; Zheng, H. Umbelliferone as a small molecular peroxidase mimic towards sensitive detection of H2O2 and glucose. Anal. Sci. 2018, 34, 933−938.  doi: 10.2116/analsci.18P023

    47. [47]

      Lin, T.; Zhong, L.; Guo, L.; Fu, F.; Chen, G. Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 2014, 6, 11856−11862.  doi: 10.1039/C4NR03393K

    48. [48]

      Song, Y.; Qu, K.; Zhao, C.; Ren, J.; Qu, X. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.  doi: 10.1002/adma.200903783

    49. [49]

      Huang, Y.; Zhao, M.; Han, S.; Lai, Z.; Yang, J.; Tan, C.; Ma, Q.; Lu, Q.; Chen, J.; Zhang, X.; Zhang, Z.; Li, B.; Chen, B.; Zong, Y.; Zhang, H. Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv. Mater. 2017, 29, 1700102–5.  doi: 10.1002/adma.201700102

    50. [50]

      Huang, Q. Q.; Li, Y. Z.; Zheng, Z.; Jiang, X. M.; Sun, S. S.; Jiang, H. J.; Deng, W. H.; Wang, G. E.; Zhai, T. Y.; Li, M. D.; Xu, G. Single-component MLCT-active photodetecting material based on a two-dimensional coordination polymer. CCS Chem. 2019, 1, 655–662.

    51. [51]

      Chiu, S. W.; Tang, K. T. Towards a chemiresistive sensor-integrated electronic nose: a review. Sensors 2013, 13, 14214–14247.  doi: 10.3390/s131014214

    52. [52]

      Jiang, H.; Cao, L.; Li, Y.; Li, W.; Ye, X.; Deng, W.; Jiang, X.; Wang, G.; Xu, G. Organic "receptor" fully covered few-layer organic-metal chalcogenides for high-performance chemiresistive gas sensing at room temperature. Chem. Commun. 2020, 56, 5366–5369.  doi: 10.1039/D0CC01092H

  • 加载中
    1. [1]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    2. [2]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    3. [3]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    4. [4]

      Yating ZhengYulan HuangJing LuoXuqi PengXiran GuiGang LiuYang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169

    5. [5]

      Yanqi WuYuhong GuanPeilin HuangHui ChenLiping BaiZhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308

    6. [6]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    7. [7]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    8. [8]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    9. [9]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    10. [10]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    11. [11]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    12. [12]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    13. [13]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    14. [14]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    15. [15]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    16. [16]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    17. [17]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    18. [18]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    19. [19]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    20. [20]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

Metrics
  • PDF Downloads(3)
  • Abstract views(292)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return