Citation: Xi-Yue CHENG, Myung-Hwan WHANGBO, Mao-Chun HONG, Shui-Quan DENG. Atom Response Theory of Nonlinear Optical Responses and Its Applications[J]. Chinese Journal of Structural Chemistry, ;2020, 39(12): 2172-2181. doi: 10.14102/j.cnki.0254-5861.2011-3019 shu

Atom Response Theory of Nonlinear Optical Responses and Its Applications

  • Corresponding author: Shui-Quan DENG, sdeng@fjirsm.ac.cn
  • Received Date: 3 October 2020
    Accepted Date: 11 November 2020

    Fund Project: the National Natural Science Foundation (NSF) of China 21921001the National Natural Science Foundation (NSF) of China 21703251the National Natural Science Foundation (NSF) of China 22031009the National Natural Science Foundation (NSF) of China 22075282the National Natural Science Foundation (NSF) of China 61874122the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) XDB20000000the National Key Research and Development Program of China 2016YFB0701001the NSF of Fujian Province 2019J05151the NSF of Fujian Province 2019J01121the Youth Innovation Promotion of CAS 2019302

Figures(8)

  • Second-order nonlinear optical (NLO) crystalline materials are fundamentally and technologically important for their ability to double or triple the frequency of lasers. This article provides a brief review of the atom response theory (ART) of NLO responses recently developed on the basis of the partial response functional method. The ART analysis enables one to quantitatively evaluate the contributions of individual constituent atoms to the second harmonic generation (SHG) response of a NLO crystal material on the basis of first principles DFT calculations. The general partitioning principles developed in our recent work provide the conceptual foundation for determining the functional motifs of SHG responses. In this mini review we will focus on the concepts and principles as well as on applications with examples. Some practically important empirical rules resulting from the ART studies will also be reviewed.
  • 加载中
    1. [1]

      Shen, Y. R. The Principles of Nonlinear Optics. Wiley-Interscience: New York 1984.

    2. [2]

      Boyd, R. W. Nonlinear Optics. Elsevier 2003.

    3. [3]

      Chen, C. T.; Sasaki, T.; Li, R.; Wu, Y.; Lin, Z.; Mori, Y.; Kaneda, Y. Nonlinear Optical Borate Crystals. Wiley-VCH: Weinheim: Germany 2012.

    4. [4]

      Chen, C. T. An ionic grouping theory of the electro-optical and nonlinear optical effects of crystals (Ⅰ). Acta Phys. Sin. 1976, 25, 146–161.  doi: 10.7498/aps.25.146

    5. [5]

      Chen, C. T. A localized quantal theoretical treatment, based on an anionic coordination polyhedron model, for the EO and SHG effects in crystals of the mixed-oxide types. Sci. Sin. 1979, 22, 756–776.

    6. [6]

      Chen, C. T.; Liu, G. Z. Recent advances in nonlinear optical and electro-optical materials. Annu. Rev. Mater. Sci. 1986, 16, 203–243.  doi: 10.1146/annurev.ms.16.080186.001223

    7. [7]

      Ran, M. Y.; Ma, Z.; Chen, H.; Li, B.; Wu, X. T.; Lin, H.; Zhu, Q. L. Partial isovalent anion substitution to access remarkable second-harmonic generation response: a generic and effective strategy for design of infrared nonlinear optical materials. Chem. Mater. 2020, 32, 5890–5896.  doi: 10.1021/acs.chemmater.0c02011

    8. [8]

      Li, R. A.; Zhou, Z.; Lian, Y. K.; Jia, F.; Jiang, X.; Tang, M. C.; Wu, L. M.; Sun, J.; Chen, L. A2SnS5: a structural incommensurate modulation exhibiting strong second-harmonic generation and a high laser-induced damage threshold (A = Ba, Sr). Angew. Chem. Int. Ed. 2020, 59, 11861–11865.  doi: 10.1002/anie.202004059

    9. [9]

      Fan, H.; Lin, C.; Chen, K.; Peng, G.; Li, B.; Zhang, G.; Long, X.; Ye, N. (NH4)Bi2(IO3)2F5: an unusual ammonium-containing metal iodate fluoride showing strong second harmonic generation response and thermochromic behavior. Angew. Chem. Int. Ed. 2020, 59, 5268–5272.  doi: 10.1002/anie.201913287

    10. [10]

      Chen, J.; Hu, C. L.; Zhang, X. H.; Li, B. X.; Yang, B. P.; Mao, J. G. CsVO2F(IO3): an excellent SHG material featuring an unprecedented 3D [VO2F(IO3)]- anionic framework. Angew. Chem. Int. Ed. 2020, 59, 5381–5384.  doi: 10.1002/anie.202000587

    11. [11]

      Liu, Y.; Liu, X.; Liu, S.; Ding, Q.; Li, Y.; Li, L.; Zhao, S.; Lin, Z.; Luo, J.; Hong, M. An unprecedented antimony(Ⅲ) borate with strong linear and nonlinear optical responses. Angew. Chem. Int. Ed. 2020, 59, 7793–7796.  doi: 10.1002/anie.202001042

    12. [12]

      Cheng, X.; Whangbo, M. H.; Guo, G. C.; Hong, M.; Deng, S. Large second harmonic generation of LiCs2PO4 caused by the metal-cation-centered groups. Angew. Chem. Int. Ed. 2018, 57, 3933–3937.  doi: 10.1002/anie.201711465

    13. [13]

      Jia, M.; Cheng, X.; Whangbo, M. H.; Hong, M.; Deng, S. Second harmonic generation responses of KH2PO4: importance of K and breaking down of Kleinman symmetry. RSC Advances 2020, 10, 26479–26485.  doi: 10.1039/D0RA03136D

    14. [14]

      Jiang, X.; Zhao, S.; Lin, Z.; Luo, J.; Bristowe, P. D.; Guan, X.; Chen, C. The role of dipole moment in determining the nonlinear optical behavior of materials: ab initio studies on quaternary molybdenum tellurite crystals. J. Mater. Chem. C 2014, 2, 530–537.  doi: 10.1039/C3TC31872A

    15. [15]

      Cammarata, A.; Zhang, W.; Halasyamani, P. S.; Rondinelli, J. M. Microscopic origins of optical second harmonic generation in noncentrosymmetric-nonpolar materials. Chem. Mater. 2014, 26, 5773–5781.  doi: 10.1021/cm502895h

    16. [16]

      Cheng, X.; Whangbo, M. H.; Hong, M.; Deng, S. Dependence of the second-harmonic generation response on the cell volume to band-gap ratio. Inorg. Chem. 2019, 58, 9572–9575.  doi: 10.1021/acs.inorgchem.9b01368

    17. [17]

      Cai, Z.; Cheng, X.; Whangbo, M. H.; Hong, M.; Deng, S. The partition principles for atom scale structure and its physical property: application to the nonlinear optical crystal material KBe2BO3F2. Phys. Chem. Chem. Phys. 2020, 22, 19299–19306.  doi: 10.1039/D0CP02755C

    18. [18]

      (Cheng, X.; Li, Z. H.; Wu, X. T.; Hong, M.; Whangbo, M. H.; Deng, S. Key factors controlling the large second harmonic generation in nonlinear optical materials. ACS Appl. Mater. Interfaces 2020, 12, 9434–9439.  doi: 10.1021/acsami.9b20023

    19. [19]

      Cheng, X.; Li, Z.; Wu, X.; Hong, M.; Whangbo, M. H.; Deng, S. Key factors controlling the large second harmonic generation in nonlinear optical materials. ACS Appl. Mater. Interfaces 2020, 12, 9434–9439.  doi: 10.1021/acsami.9b20023

    20. [20]

      Cheng, X.; Whangbo, M. H.; Guo, G. C.; Hong, M.; Deng, S. The large second-harmonic generation of LiCs2PO4 is caused by the metal-cation-centered groups. Angew. Chem., Int. Ed. 2018, 57, 3933–3937.  doi: 10.1002/anie.201711465

    21. [21]

      Guo, S. P.; Cheng, X. Y.; Sun, Z. D.; Chi, Y.; Liu, B. W.; Jiang, X. M.; Li, S. F.; Xue, H. G.; Deng, S.; Duppel, V.; Köhler, J.; Guo, G. C. Large SHG effect and high LIDT observed coexisting in gallium selenide: a simple but perfect case. Angew. Chem. Int. Ed. 2019, 131, 8171–8175.  doi: 10.1002/ange.201902839

    22. [22]

      Cheng, X.; Whangbo, M. H.; Hong, M.; Deng, S. Dependence of the second-harmonic generation response on the cell volume to band-gap ratio. Inorg. Chem. 2019, 58, 9572–9575.  doi: 10.1021/acs.inorgchem.9b01368

    23. [23]

      Ye, R.; Cheng, X.; Liu, B. W.; Jiang, X. M.; Yang, L. Q.; Deng, S.; Guo, G. C. Strong nonlinear optical effect attained by atom-response-theory aided design in the Na2MMⅣ2Q6 (M = Zn, Cd; M= Ge, Sn; Q = S, Se) chalcogenide system. J. Mater. Chem. C 2020, 8, 1244–1247.  doi: 10.1039/C9TC06492C

    24. [24]

      Armstrong, J. A.; Bloembergen, N.; Ducuing, J.; Pershan, P. S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 1962, 127, 1918–1939.  doi: 10.1103/PhysRev.127.1918

    25. [25]

      Sipe, J. E.; Ghahramani, E. Nonlinear optical response of semiconductors in the independent-particle approximation. Phys. Rev. B 1993, 48, 11705–11722.  doi: 10.1103/PhysRevB.48.11705

    26. [26]

      Gonze, X.; Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 1997, 55, 10355–10368.  doi: 10.1103/PhysRevB.55.10355

    27. [27]

      Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci. 1996, 6, 15–50.  doi: 10.1016/0927-0256(96)00008-0

    28. [28]

      Halmos, P. R. Naive Set Theory; Springer-Verlag: New York 1960.

    29. [29]

      Economou, E. N. Green's Functions in Quantum Physics; Springer-Verlag: Heidelberg 1979.

    30. [30]

      Born, M.; Oppenheimer, J. R. Quantum theory of the molecules. Ann. der Phys. 1927, 84, 457–484.

    31. [31]

      Sutton, A. P.; Finnis, M. W.; Pettifor, D. G.; Ohta, Y. The tight-binding bond model. J. Phys. C: Solid State Phys. 1988, 21, 35–66.  doi: 10.1088/0022-3719/21/1/007

    32. [32]

      Dronskowski, R.; Bloechl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 1993, 97, 8617–8624.  doi: 10.1021/j100135a014

    33. [33]

      Zeidler, E. Quantum Field Theory I, Basics in Mathematics and Physics; Springer-Verlag: Heidelberg 2006.

    34. [34]

      Li, L.; Wang, Y.; Lei, B. H.; Han, S.; Yang, Z.; Poeppelmeier, K. R.; Pan, S. A new deep-ultraviolet transparent orthophosphate LiCs2PO4 with large second harmonic generation response. J. Am. Chem. Soc. 2016, 138 9101–9104.  doi: 10.1021/jacs.6b06053

    35. [35]

      Shen, Y.; Yang, Y.; Zhao, S.; Zhao, B.; Lin, Z.; Ji, C.; Li, L.; Fu, P.; Hong, M.; Luo, J. Deep-ultraviolet transparent Cs2LiPO4 exhibits an unprecedented second harmonic generation. Chem. Mater. 2016, 28, 7110–7116.  doi: 10.1021/acs.chemmater.6b03333

    36. [36]

      Rashkeev, S. N.; Limpijumnong, S.; Lambrecht, W. R. Second-harmonic generation and birefringence of some ternary pnictide semiconductors. Phys. Rev. B 1999, 59, 2737–2748.  doi: 10.1103/PhysRevB.59.2737

    37. [37]

      Lambrecht, W. R. L.; Rashkeev, S. N. First-principles calculations of second-order optical response functions in chalcopyrite semiconductors. J. Phys. Chem. Solids 2003, 64, 1615–1619.  doi: 10.1016/S0022-3697(03)00076-3

    38. [38]

      He, G.; Rozahun, I.; Li, Z.; Zhang, J.; Lee, M. H. Size effect and identified superior functional units enhancing second harmonic generation responses on the Ⅱ-Ⅳ-Ⅴ2 type nonlinear optical crystals. Chem. Phys. 2019, 518.

    39. [39]

      Zhang, M. J.; Jiang, X. M.; Zhou, L. J.; Guo, G. C. Two phases of Ga2S3: promising infrared second-order nonlinear optical materials with very high laser induced damage thresholds. J. Mater. Chem. C 2013, 1, 4754–4760.  doi: 10.1039/c3tc30808a

    40. [40]

      Li, G. M.; Wu, K.; Liu, Q.; Yang, Z. H.; Pan, S. L. Na2ZnGe2S6: a new infrared nonlinear optical material with good balance between large second-harmonic generation response and high laser damage threshold. J. Am. Chem. Soc. 2016, 138, 7422–7428.  doi: 10.1021/jacs.6b03734

    41. [41]

      Li, G. M.; Wu, K.; Liu, Q.; Yang, Z. H.; Pan, S. L. Na2ZnSn2S6: a mixed-metal thiostannate with large second-harmonic generation response activated by penta-tetrahedral [ZnSn4S14]10- clusters. Sci. China Tech. Sci. 2017, 60, 1465–1472.  doi: 10.1007/s11431-016-9039-1

    42. [42]

      Li, G. M.; Liu, Q.; Wu, K.; Yang, Z. H.; Pan, S. L. Na2CdGe2Q6 (Q = S, Se): two metal-mixed chalcogenides with phase-matching abilities and large second-harmonic generation responses. Dalton Trans. 2017, 46, 2778–2784.  doi: 10.1039/C7DT00087A

  • 加载中
    1. [1]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    2. [2]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    5. [5]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    6. [6]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    7. [7]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    8. [8]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    9. [9]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    10. [10]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    11. [11]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    12. [12]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    13. [13]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    14. [14]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    15. [15]

      Zikang HuHengjie ZhangZhengqiu LiTianbao ZhaoZhipeng GuQijuan YuanBaoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527

    16. [16]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    17. [17]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    18. [18]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    19. [19]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    20. [20]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

Metrics
  • PDF Downloads(8)
  • Abstract views(464)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return