Recent Progress in Developing Crystalline Ion Exchange Materials for the Removal of Radioactive Ions
- Corresponding author: Mei-Ling FENG, fml@fjirsm.ac.cn
Citation: Jun-Hao TANG, Hai-Yan SUN, Wen MA, Mei-Ling FENG, Xiao-Ying HUANG. Recent Progress in Developing Crystalline Ion Exchange Materials for the Removal of Radioactive Ions[J]. Chinese Journal of Structural Chemistry, ;2020, 39(12): 2157-2171. doi: 10.14102/j.cnki.0254-5861.2011-3018
Shozugawa, K.; Nogawa, N.; Matsuo, M. Deposition of fission and activation products after the Fukushima Dai-ichi nuclear power plant accident. Environ. Pollut. 2012, 163, 243–247.
doi: 10.1016/j.envpol.2012.01.001
Mohammed, A. A.; Moamen, O. A. A.; Metwally, S. S.; El-Kamash, A. M.; Ashour, I.; Al-Geundi, M. S. Utilization of modified attapulgite for the removal of Sr(Ⅱ), Co(Ⅱ), and Ni(Ⅱ) ions from multicomponent system, part I: kinetic studies. Environ. Sci. Pollut. Res. 2020, 27, 6824–6836.
doi: 10.1007/s11356-019-07292-3
Naskar, N.; Banerjee, K. Development of sustainable extraction method for long-lived radioisotopes, 133Ba and 134Cs using a potential bio-sorbent. J. Radioanal. Nucl. Chem. 2020, 325, 587–593.
doi: 10.1007/s10967-020-07241-2
Noh, Y. D.; Komarneni, S.; Mackenzie, K. J. D. Titanosilicates: giant exchange capacity and selectivity for Sr and Ba. Sep. Purif. Technol. 2012, 95, 222–226.
doi: 10.1016/j.seppur.2012.05.013
Anspaugh, L. R.; Catlin, R. J.; Goldman, M. The global impact of the chernobyl reactor accident. Science 1988, 242, 1513–1519.
doi: 10.1126/science.3201240
Ivanov, Y. A.; Lewyckyj, N.; Levchuk, S. E.; Prister, B. S.; Firsakova, S. K.; Arkhipov, N. P.; Arkhipov, A. N.; Kruglov, S. V.; Alexakhin, R. M.; Sandalls, J.; Askbrant, S. Migration of 137Cs and 90Sr from Chernobyl fallout in Ukrainian, Belarussian and Russian soils. J. Environ. Radioact. 1997, 35, 1–21.
doi: 10.1016/S0265-931X(96)00036-7
Figueiredo, B. R.; Cardoso, S. P.; Portugal, I.; Rocha, J.; Silva, C. M. Inorganic ion exchangers for cesium removal from radioactive wastewater. Sep. Purif. Rev. 2017, 47, 306–336.
Olatunji, M. A.; Khandaker, M. U.; Mahmud, H. N. M. E. Adsorption kinetics, equilibrium and radiation effect studies of radioactive cesium by polymer-based adsorbent. J. Vinyl Addit. Technol. 2018, 24, 347–357.
doi: 10.1002/vnl.21620
Burger, A.; Lichtscheidl, I. Strontium in the environment: review about reactions of plants towards stable and radioactive strontium isotopes. Sci. Total Environ. 2019, 653, 1458–1512.
doi: 10.1016/j.scitotenv.2018.10.312
Wang, J. L.; Zhuang, S. T. Removal of cesium ions from aqueous solutions using various separation technologies. Rev. Environ. Sci. Bio-Technol. 2019, 18, 231–269.
doi: 10.1007/s11157-019-09499-9
Awual, M. R.; Yaita, T.; Miyazaki, Y.; Matsumura, D.; Shiwaku, H.; Taguchi, T. A reliable hybrid adsorbent for efficient radioactive cesium accumulation from contaminated wastewater. Sci. Rep. 2016, 6, 19937.
doi: 10.1038/srep19937
Vardhan, K. H.; Kumar, P. S.; Panda, R. C. A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197.
doi: 10.1016/j.molliq.2019.111197
Mincher, B. J.; Modolo, G.; Mezyk, S. P. Review article: the effects of radiation chemistry on solvent extraction 3: a review of actinide and lanthanide extraction. Solvent Extr. Ion Exch. 2009, 27, 579–606.
doi: 10.1080/07366290903114098
Panak, P. J.; Geist, A. Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands. Chem. Rev. 2013, 113, 1199–1236.
doi: 10.1021/cr3003399
Chi, R.; Hu, Y.; Zhu, G.; Xu, S.; Zhou, Z.; Xu, Z. Solution-chemistry analysis of ammonium bicarbonate consumption in rare-earth-element precipitation. Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. 2003, 34, 611–617.
doi: 10.1007/s11663-003-0031-z
Tan, X. L.; Wang, X. K.; Geckeis, H.; Rabung, T. Sorption of Eu(Ⅲ) on humic acid or fulvic acid bound to hydrous alumina studied by SEM-EDS, XPS, TRLFS, and batch techniques. Environ. Sci. Technol. 2008, 42, 6532–6537.
doi: 10.1021/es8007062
Fang, Q. R.; Yuan, D. Q.; Sculley, J.; Li, J. R.; Han, Z. B.; Zhou, H. C. Functional mesoporous metal-organic frameworks for the capture of heavy metal ions and size-selective catalysis. Inorg. Chem. 2010, 49, 11637–11642.
doi: 10.1021/ic101935f
Vijayaraghavan, K.; Sathishkumar, M.; Balasubramanian, R. Biosorption of lanthanum, cerium, europium, and ytterbium by a brown marine alga, turbinaria conoides. Ind. Eng. Chem. Res. 2010, 49, 4405–4411.
doi: 10.1021/ie1000373
Yaftian, M. R.; Burgard, M.; Dieleman, C. B.; Matt, D. Rare-earth metal-ion separation using a supported liquid membrane mediated by a narrow rim phosphorylated calix 4 arene. J. Membr. Sci. 1998, 144, 57–64.
doi: 10.1016/S0376-7388(98)00031-3
Romanovskiy, V. N.; Smirnov, I. V.; Babain, V. A.; Todd, T. A.; Herbst, R. S.; Law, J. D.; Brewer, K. N. The universal solvent extraction (UNEX) process. I. Development of the UNEX process solvent for the separation of cesium, strontium, and the actinides from acidic radioactive waste. Solvent Extr. Ion Exch. 2001, 19, 1–21.
doi: 10.1081/SEI-100001370
Gu, P. C.; Zhang, S.; Li, X.; Wang, X. X.; Wen, T.; Jehan, R.; Alsaedi, A.; Hayat, T.; Wang, X. K. Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ. Pollut. 2018, 240, 493–505.
doi: 10.1016/j.envpol.2018.04.136
Zhang, X.; Gu, P.; Liu, Y. Decontamination of radioactive wastewater: state of the art and challenges forward. Chemosphere 2019, 215, 543–553.
doi: 10.1016/j.chemosphere.2018.10.029
Paulus, W. J.; Komarneni, S.; Roy, R. Bulk synthesis and selective exchange of strontium ions in Na4Mg6Al4Si4O20F4 mica. Nature 1992, 357, 571–573.
doi: 10.1038/357571a0
Manos, M. J.; Kanatzidis, M. G. Metal sulfide ion exchangers: superior sorbents for the capture of toxic and nuclear waste-related metal ions. Chem. Sci. 2016, 7, 4804–4824.
doi: 10.1039/C6SC01039C
Chavez, M. L.; de Pablo, L.; Garcia, T. A. Adsorption of Ba2+ by Ca-exchange clinoptilolite tuff and montmorillonite clay. J. Hazard. Mater. 2010, 175, 216–223.
doi: 10.1016/j.jhazmat.2009.09.151
Shirzadi, H.; Nezamzadeh-Ejhieh, A. An efficient modified zeolite for simultaneous removal of Pb(Ⅱ) and Hg(Ⅱ) from aqueous solution. J. Mol. Liq. 2017, 230, 221–229.
doi: 10.1016/j.molliq.2017.01.029
Seliman, A. F.; Lasheen, Y. F.; Youssief, M. A. E.; Abo-Aly, M. M.; Shehata, F. A. Removal of some radionuclides from contaminated solution using natural clay: bentonite. J. Radioanal. Nucl. Chem. 2014, 300, 969–979.
doi: 10.1007/s10967-014-3027-z
Poojary, D. M.; Cahill, R. A.; Clearfield, A., Synthesis, crystal structures, and ion-exchange properties of a novel porous titanosilicate. Chem. Mater. 1994, 6, 2364–2368.
doi: 10.1021/cm00048a024
Rahman, R. O. A.; Ibrahium, H. A.; Hung, Y. T. Liquid radioactive wastes treatment: a review. Water 2011, 3, 551–565.
doi: 10.3390/w3020551
Mertz, J. L.; Fard, Z. H.; Malliakas, C. D.; Manos, M. J.; Kanatzidis, M. G. Selective removal of Cs+, Sr2+, and Ni2+ by K2xMgxSn3-xS6 (x = 0.5~1) (KMS-2) relevant to nuclear waste remediation. Chem. Mater. 2013, 25, 2116–2127.
doi: 10.1021/cm400699r
Ding, N.; Chung, D. Y.; Kanatzidis, M. G. K6Cd4Sn3Se13: a polar open-framework compound based on the partially destroyed supertetrahedral [Cd4Sn4Se17]10- cluster. Chem. Commun. 2004, 35, 1170–1171.
Manos, M. J.; Iyer, R. G.; Quarez, E.; Liao, J. H.; Kanatzidis, M. G. {Sn[Zn4Sn4S17]}6-: a robust open framework based on metal-linked penta-supertetrahedral [Zn4Sn4S17]10- clusters with ion-exchange properties. Angew. Chem. Int. Ed. 2005, 44, 3552–3555.
doi: 10.1002/anie.200500214
Wu, M.; Sul, W. P.; Jasutkar, N.; Huang, X. Y.; Li, J. An open-framework bimetallic chalcogenide structure K3Rb3Zn4Sn3Se13 built on a unique [Zn4Sn3Se16]12- cluster: synthesis, crystal structure, ion exchange and optical properties. Mater. Res. Bull. 2005, 40, 21–27.
doi: 10.1016/j.materresbull.2004.09.016
Ding, N.; Kanatzidis, M. G. Acid-induced conversions in open-framework semiconductors: from [Cd4Sn3Se13]6− to [Cd15Sn12Se46]14−, a remarkable disassembly/reassembly process. Angew. Chem. Int. Ed. 2006, 45, 1397–1401.
doi: 10.1002/anie.200502787
Manos, M. J.; Chrissafis, K.; Kanatzidis, M. G. Unique pore selectivity for Cs+ and exceptionally high NH4+ exchange capacity of the chalcogenide material K6Sn[Zn4Sn4S17]. J. Am. Chem. Soc. 2006, 128, 8875–8883.
doi: 10.1021/ja061342t
Manos, M. J.; Ding, N.; Kanatzidis, M. G. Layered metal sulfides: exceptionally selective agents for radioactive strontium removal. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 3696–3699.
doi: 10.1073/pnas.0711528105
Manos, M. J.; Kanatzidis, M. G. Highly efficient and rapid Cs+ uptake by the layered metal sulfide K2xMnxSn3−xS6 (KMS-1). J. Am. Chem. Soc. 2009, 131, 6599–6607.
doi: 10.1021/ja900977p
Manos, M. J.; Kanatzidis, M. G. Sequestration of heavy metals from water with layered metal sulfides. Chem. Eur. J. 2009, 15, 4779–4784.
doi: 10.1002/chem.200900353
Manos, M. J.; Petkov, V. G.; Kanatzidis, M. G. H2xMnxSn3-xS6 (x = 0.11~0.25): a novel reusable sorbent for highly specific mercury capture under extreme pH conditions. Adv. Funct. Mater. 2009, 19, 1087–1092.
doi: 10.1002/adfm.200801563
Feng, M. L.; Kong, D. N.; Xie, Z. L.; Huang, X. Y. Three-dimensional chiral microporous germanium antimony sulfide with ion-exchange properties. Angew. Chem. Int. Ed. 2008, 47, 8623–8626.
doi: 10.1002/anie.200803406
Li, J. R.; Huang, X. Y. [(Me)2NH2]0.75[Ag1.25SnSe3]: a three-dimensionally microporous chalcogenide exhibiting framework flexibility upon ion-exchange. Dalton Trans. 2011, 40, 4387–4390.
doi: 10.1039/c0dt01381a
Wang, K. Y.; Feng, M. L.; Li, J. R.; Huang, X. Y. [NH3CH3]4[In4SbS9SH]: a novel methylamine-directed indium thioantimonate with Rb+ ion-exchange property. J. Mater. Chem. A 2013, 1, 1709–1715.
doi: 10.1039/C2TA00710J
Feng, M. L.; Qi, X. H.; Zhang, B.; Huang, X. Y. [(Me2)NH2]BiGeS4: the first organically directed bismuth thiogermanate with Rb+ ion exchange property. Dalton Trans. 2014, 43, 8184–8187.
doi: 10.1039/c4dt00173g
Qi, X. H.; Du, K. Z.; Feng, M. L.; Li, J. R.; Du, C. F.; Zhang, B.; Huang, X. Y. A two-dimensionally microporous thiostannate with superior Cs+ and Sr2+ ion-exchange property. J. Mater. Chem. A 2015, 3, 5665–5673.
doi: 10.1039/C5TA00566C
Zhang, B.; Feng, M. L.; Cui, H. H.; Du, C. F.; Qi, X. H.; Shen, N. N.; Huang, X. Y. Syntheses, crystal structures, ion-exchange, and photocatalytic properties of two amine-directed Ge-Sb-S compounds. Inorg. Chem. 2015, 54, 8474–8481.
doi: 10.1021/acs.inorgchem.5b01181
Feng, M. L.; Sarma, D.; Qi, X. H.; Du, K. Z.; Huang, X. Y.; Kanatzidis, M. G. Efficient removal and recovery of uranium by a layered organic-inorganic hybrid thiostannate. J. Am. Chem. Soc. 2016, 138, 12578–12585.
doi: 10.1021/jacs.6b07351
Qi, X. H.; Du, K. Z.; Feng, M. L.; Gao, Y. J.; Huang, X. Y.; Kanatzidis, M. G. Layered A2Sn3S7·1.25H2O (A = organic cation) as efficient ion exchanger for rare earth element recovery. J. Am. Chem. Soc. 2017, 139, 4314–4317.
doi: 10.1021/jacs.7b00565
Feng, M. L.; Sarma, D.; Gao, Y. J.; Qi, X. H.; Li, W. A.; Huang, X. Y.; Kanatzidis, M. G. Efficient removal of [UO2]2+, Cs+, and Sr2+ ions by radiation-resistant gallium thioantimonates. J. Am. Chem. Soc. 2018, 140, 11133–11140.
doi: 10.1021/jacs.8b07457
Gao, Y. J.; Feng, M. L.; Zhang, B.; Wu, Z. F.; Song, Y.; Huang, X. Y. An easily synthesized microporous framework material for the selective capture of radioactive Cs+ and Sr2+ ions. J. Mater. Chem. A 2018, 6, 3967–3976.
doi: 10.1039/C7TA11208D
Zhang, B.; Li, W. A.; Liao, Y. Y.; Zhang, C.; Feng, M. L.; Huang, X. Y. [CH3NH3]4Ga4SbS9S0.28O0.72H: a three-dimensionally open-framework heterometallic chalcogenidoantimonate exhibiting Ni2+ ion-exchange property. Chem. Asian J. 2018, 13, 672–678.
doi: 10.1002/asia.201701763
Zhang, B.; Li, J.; Wang, D. N.; Feng, M. L.; Huang, X. Y. Fast and effective decontamination of aqueous mercury by a highly stable zeolitic-like chalcogenide. Inorg. Chem. 2019, 58, 4103–4109.
doi: 10.1021/acs.inorgchem.8b02981
Zhang, B.; Sun, H. Y.; Li, J.; Li, L. Z.; Deng, Y. L.; Liu, S. H.; Feng, M. L.; Huang, X. Y. Fast and selective removal of aqueous uranium by a K+-activated robust zeolitic sulfide with wide pH resistance. Inorg. Chem. 2019, 58, 11622–11629.
doi: 10.1021/acs.inorgchem.9b01531
Gao, Y. J.; Sun, H. Y.; Li, J. L.; Qi, X. H.; Du, K. Z.; Liao, Y. Y.; Huang, X. Y.; Feng, M. L.; Kanatzidis, M. G. Selective capture of Ba2+, Ni2+, and Co2+ by a robust layered metal sulfide. Chem. Mater. 2020, 32, 1957–1963.
doi: 10.1021/acs.chemmater.9b04831
Ma, W.; Hu, B.; Li, J. L.; Zhang, Z. Z.; Zeng, X.; Jin, J.; Li, Z.; Zheng, S. T.; Feng, M. L.; Huang, X. Y. The uptake of hazardous metal ions into a high-nuclearity cluster-based compound with structural transformation and proton conduction. ACS Appl. Mater. Interfaces 2020, 12, 26222–26231.
doi: 10.1021/acsami.0c06082
Sun, H.; Liu, Y.; Lin, J.; Yue, Z.; Li, W.; Jin, J.; Sun, Q.; Ai, Y.; Feng, M.; Huang, X. Highly selective recovery of lanthanides by using a layered vanadate with acid and radiation resistance. Angew. Chem. Int. Ed. 2020, 59, 1878–1883.
doi: 10.1002/anie.201912040
Olatunji, M. A.; Khandaker, M. U.; Mahmud, H. N. M. E.; Amin, Y. M. Influence of adsorption parameters on cesium uptake from aqueous solutions- a brief review. RSC Adv. 2015, 5, 71658–71683.
doi: 10.1039/C5RA10598F
Chen, S.; Hu, J.; Han, S.; Guo, Y.; Belzile, N.; Deng, T. A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade. Sep. Purif. Technol. 2020, 251, 117340.
doi: 10.1016/j.seppur.2020.117340
Sun, J.; Yang, D. J.; Sun, C. H.; Liu, L.; Yang, S. L.; Jia, Y.; Cai, R. S.; Yao, X. D. Potassium niobate nanolamina: a promising adsorbent for entrapment of radioactive cations from water. Sci. Rep. 2014, 4, 7313.
Sun, J.; Liu, L.; Zhao, X. L.; Yang, S. L.; Komarneni, S.; Yang, D. J. Capture of radioactive cations from water using niobate nanomaterials with layered and tunnel structures. RSC Adv. 2015, 5, 75354–75359.
doi: 10.1039/C5RA10907H
Ding, N.; Kanatzidis, M. G. Permeable layers with large windows in [(CH3CH2CH2)2NH2]5In5Sb6S19. 1.45H2O: high ion-exchange capacity, size discrimination, and selectivity for Cs ions. Chem. Mater. 2007, 19, 3867–3869.
doi: 10.1021/cm071179g
Yang, W.; Pan, Q.; Song, S.; Zhang, H. Metal-organic framework-based materials for the recovery of uranium from aqueous solutions. Inorg. Chem. Front. 2019, 6, 1924–1937.
doi: 10.1039/C9QI00386J
Yang, W. T.; Bai, Z. Q.; Shi, W. Q.; Yuan, L. Y.; Tian, T.; Chai, Z. F.; Wang, H.; Sun, Z. M. MOF-76: from a luminescent probe to highly efficient UⅥ sorption material. Chem. Commun. 2013, 49, 10415–10417.
doi: 10.1039/C3CC44983A
Bai, Z. Q.; Yuan, L. Y.; Zhu, L.; Liu, Z. R.; Chu, S. Q.; Zheng, L. R.; Zhang, J.; Chai, Z. F.; Shi, W. Q. Introduction of amino groups into acid-resistant MOFs for enhanced U(Ⅵ) sorption. J. Mater. Chem. A 2015, 3, 525–534.
doi: 10.1039/C4TA04878D
Endrizzi, F.; Rao, L. F. Chemical speciation of uranium(Ⅵ) in marine environments: complexation of calcium and magnesium ions with [(UO2)(CO3)3]4- and the effect on the extraction of uranium from seawater. Chem. Eur. J. 2014, 20, 14499–14506.
doi: 10.1002/chem.201403262
Kim, J.; Tsouris, C.; Mayes, R. T.; Oyola, Y.; Saito, T.; Janke, C. J.; Dai, S.; Schneider, E.; Sachde, D. Recovery of uranium from seawater: a review of current status and future research needs. Sep. Sci. Technol. 2013, 48, 367–387.
doi: 10.1080/01496395.2012.712599
Ivanov, A. S.; Parker, B. F.; Zhang, Z.; Aguila, B.; Sun, Q.; Ma, S.; Jansone-Popova, S.; Arnold, J.; Mayes, R. T.; Dai, S.; Bryantsev, V. S.; Rao, L.; Popovs, I. Siderophore-inspired chelator hijacks uranium from aqueous medium. Nat. Commun. 2019, 10, 819.
doi: 10.1038/s41467-019-08758-1
Wang, D.; Song, J.; Wen, J.; Yuan, Y.; Liu, Z.; Lin, S.; Wang, H.; Wang, H.; Zhao, S.; Zhao, X.; Fang, M.; Lei, M.; Li, B.; Wang, N.; Wang, X.; Wu, H. Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent. Adv. Energy Mater. 2018, 8, 1802607.
doi: 10.1002/aenm.201802607
Yang, H. J.; Luo, M.; Luo, L.; Wang, H. X.; Hu, D. D.; Lin, J.; Wang, X.; Wang, Y. L.; Wang, S.; Bu, X. H.; Feng, P. Y.; Wu, T. Highly selective and rapid uptake of radionuclide cesium based on robust zeolitic chalcogenide via stepwise ion-exchange strategy. Chem. Mater. 2016, 28, 8774–8780.
doi: 10.1021/acs.chemmater.6b04273
Alonso, E.; Sherman, A. M.; Wallington, T. J.; Everson, M. P.; Field, F. R.; Roth, R.; Kirchain, R. E. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Environ. Sci. Technol. 2012, 46, 3406–3414.
doi: 10.1021/es203518d
Zhang, N.; Salzinger, S.; Deubel, F.; Jordan, R.; Rieger, B. Surface-initiated group transfer polymerization mediated by rare earth metal catalysts. J. Am. Chem. Soc. 2012, 134, 7333–7336.
doi: 10.1021/ja3027423
Palasz, A.; Czekaj, P. Toxicological and cytophysiological aspects of lanthanides action. Acta Biochim. Pol. 2000, 47, 1107–1114.
doi: 10.18388/abp.2000_3963
Ashraf, M. I.; Li, N.; Han, X.; Yang, J.; Wang, Y.; Fan, S.; Irshad, M.; Mahmood, Q. Temporal changes in trace elements in brown soil and soybean after long-term fertilization. Arab. J. Geosci. 2017, 10, 289.
doi: 10.1007/s12517-017-3080-3
Schnabel, C.; Muenker, C.; Strub, E. La-Ce isotope measurements by multicollector-ICPMS. J. Anal. At. Spectrom. 2017, 32, 2360–2370.
doi: 10.1039/C7JA00256D
Attallah, M. F.; Rizk, S. E.; Shady, S. A. Separation of 152+154Eu, 90Sr from radioactive waste effluent using liquid-liquid extraction by polyglycerol phthalate. Nucl. Sci. Tech. 2018, 29, 84–92.
doi: 10.1007/s41365-018-0423-z
Maity, S.; Datta, A.; Lahiri, S.; Ganguly, J. Selective separation of 152Eu from a mixture of 152Eu and 137Cs using a chitosan based hydrogel. RSC Adv. 2015, 5, 89338–89345.
doi: 10.1039/C5RA14976B
El-Said, H. Radiochemical studies on the separation of cesium, cobalt, and europium from aqueous solutions using zirconium selenomolybdate sorbent. J. Chem. 2013, 756876.
Zhang, P.; Wang, L.; Yuan, L. Y.; Lan, J. H.; Chai, Z. F.; Shi, W. Q. Sorption of Eu(Ⅲ) on MXene-derived titanate structures: the effect of nano-confined space. Chem. Eng. J. 2019, 370, 1200–1209.
doi: 10.1016/j.cej.2019.03.286
El-Latif, M. M. A.; Elkady, M. F. Kinetics study and thermodynamic behavior for removing cesium, cobalt and nickel ions from aqueous solution using nano-zirconium vanadate ion exchanger. Desalination 2011, 271, 41–54.
doi: 10.1016/j.desal.2010.12.004
Elkady, M. F.; Hassan, H. S. Invention of hollow zirconium tungesto-vanadate at nanotube morphological structure for radionuclides and heavy metal pollutants decontamination from aqueous solutions. Nanoscale Res. Lett. 2015, 10, 474.
doi: 10.1186/s11671-015-1180-0
Lahiri, S.; Roy, K.; Bhattacharya, S.; Maji, S.; Basu, S. Separation of 134Cs and 152Eu using inorganic ion exchangers, zirconium vanadate and ceric vanadate. Appl. Radiat. Isot. 2005, 63, 293–297.
doi: 10.1016/j.apradiso.2005.03.007
Ortaboy, S.; Acar, E. T.; Atun, G. The removal of radioactive strontium ions from aqueous solutions by isotopic exchange using strontium decavanadates and corresponding mixed oxides. Chem. Eng. J. 2018, 344, 194–205.
doi: 10.1016/j.cej.2018.03.069
Datta, S. J.; Moon, W. K.; Choi, D. Y.; Hwang, I. C.; Yoon, K. B. A novel vanadosilicate with hexadeca-coordinated Cs+ ions as a highly effective Cs+ remover. Angew. Chem. Int. Ed. 2014, 53, 7203–7208.
doi: 10.1002/anie.201402778
Roy, K.; Mohapatra, P. K.; Rawat, N.; Pal, D. K.; Basu, S.; Manchanda, V. K. Separation of 90Y from 90Sr using zirconium vanadate as the ion exchanger. Appl. Radiat. Isot. 2004, 60, 621–624.
doi: 10.1016/j.apradiso.2003.09.015
Lutta, S. T.; Chernova, N. A.; Zavalij, P. Y.; Whittingham, M. S. Synthesis, crystal structures and magnetic properties of organically templated new layered vanadates: [C4H8NH2]V3O7, [(CH3)2NH2]V3O7, [C5H10NH2]V3O7 and [C2H5NH3]V3O7. J. Mater. Chem. 2004, 14, 2922–2928.
doi: 10.1039/b405150e
Shao, D. D.; Fan, Q. H.; Li, J. X.; Niu, Z. W.; Wu, W. S.; Chen, Y. X.; Wang, X. K. Removal of Eu(Ⅲ) from aqueous solution using ZSM-5 zeolite. Microporous Mesoporous Mat. 2009, 123, 1–9.
doi: 10.1016/j.micromeso.2009.03.043
Awual, M. R.; Kobayashi, T.; Shiwaku, H.; Miyazaki, Y.; Motokawa, R.; Suzuki, S.; Okamoto, Y.; Yaita, T. Evaluation of lanthanide sorption and their coordination mechanism by EXAFS measurement using novel hybrid adsorbent. Chem. Eng. J. 2013, 225, 558–566.
doi: 10.1016/j.cej.2013.04.015
Fu, F. L.; Wang, Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 2011, 92, 407–418.
doi: 10.1016/j.jenvman.2010.11.011
Dejeant, A.; Bourva, L.; Sia, R.; Galoisy, L.; Calas, G.; Phrommavanh, V.; Descostes, M. Field analyses of 238U and 226Ra in two uranium mill tailings piles from Niger using portable HPGe detector. J. Environ. Radioact. 2014, 137, 105–112.
doi: 10.1016/j.jenvrad.2014.06.012
Reinoso-Maset, E.; Ly, J. Study of uranium(Ⅵ) and radium(Ⅱ) sorption at trace level on kaolinite using a multisite ion exchange model. J. Environ. Radioact. 2016, 157, 136–148.
doi: 10.1016/j.jenvrad.2016.03.014
Teresa Olguin, M.; Deng, S. Ce-Fe-modified zeolite-rich tuff to remove Ba2+-like 226Ra2+ in presence of As(Ⅴ) and F- from aqueous media as pollutants of drinking water. J. Hazard. Mater. 2016, 302, 341–350.
doi: 10.1016/j.jhazmat.2015.09.070
Zhu, Y. F.; Wang, W. B.; Zhang, H. F.; Ye, X. S.; Wu, Z. J.; Wang, A. Q. Fast and high-capacity adsorption of Rb+ and Cs+ onto recyclable magnetic porous spheres. Chem. Eng. J. 2017, 327, 982–991.
doi: 10.1016/j.cej.2017.06.169
Duong, D. D. Adsorption analysis: equilibria and kinetics. Imperial College Press, London 1998.
Ho, Y. S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465.
doi: 10.1016/S0032-9592(98)00112-5
Ho, Y. S.; Wase, D. A. J.; Forster, C. F. Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Environ. Technol. 1996, 17, 71–77.
doi: 10.1080/09593331708616362
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
Ning DING , Siyu WANG , Shihua YU , Pengcheng XU , Dandan HAN , Dexin SHI , Chao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Jianmei Han , Peng Wang , Hua Zhang , Ning Song , Xuguang An , Baojuan Xi , Shenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
Lixian Cai , Yingxiang Ye . A flexible-robust MOF for efficient purification of perfluoropropane. Chinese Journal of Structural Chemistry, 2024, 43(11): 100368-100368. doi: 10.1016/j.cjsc.2024.100368
Shaohua Zhang , Liyao Liu , Yingqiao Ma , Chong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Linhui Liu , Wuwan Xiong , Mingli Fu , Junliang Wu , Zhenguo Li , Daiqi Ye , Peirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
Hong-Jin Liao , Zhu Zhuo , Qing Li , Yoshihito Shiota , Jonathan P. Hill , Katsuhiko Ariga , Zi-Xiu Lu , Lu-Yao Liu , Zi-Ang Nan , Wei Wang , You-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Yue Wang , Caixia Xu , Xingtao Tian , Siyu Wang , Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Jing Wang , Zhongliao Wang , Jinfeng Zhang , Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202
Jun Guo , Zhenbang Zhuang , Wanqiang Liu , Gang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096