Citation: Xia JIANG, Yan-Xin CHEN, Can-Zhong LU. Bio-inspired Materials for Photocatalytic Hydrogen Production[J]. Chinese Journal of Structural Chemistry, ;2020, 39(12): 2123-2130. doi: 10.14102/j.cnki.0254-5861.2011-3017 shu

Bio-inspired Materials for Photocatalytic Hydrogen Production

  • Corresponding author: Yan-Xin CHEN, yanxinchen@fjirsm.ac.cn Can-Zhong LU, czlu@fjirsm.ac.cn
  • Received Date: 30 October 2020
    Accepted Date: 30 November 2020

    Fund Project: the National Natural Science Foundation of China 21805280the National Natural Science Foundation of China 51672271the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000the Key Program of Frontier Science, CAS QYZDJ-SSW-SLH033

Figures(8)

  • After millions of years of evolution, species in nature have structures and complex elements that are difficult to synthesize artificially. Moreover, these fine structures and compositions are often beneficial to improve the photocatalytic performance. Therefore, various materials with special morphology, pore structure and element composition derived from biomass have emerged and are widely used. This mini review focuses on the preparation of bio-inspired materials and their current status in photocatalytic hydrogen production. Hopefully, this will bring new perspectives to researchers and make them learn more about the advantages of "learning from nature" and pay more attention to the green design of material structures.
  • 加载中
    1. [1]

      Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Rev. 2019, 48, 2109–2125.

    2. [2]

      Kong, D.; Zheng, Y.; Kobielusz, M.; Wang, Y. O.; Bai, Z. M.; Macyk, W.; Wang, X. C.; Tang, J. W. Recent advances in visible light-driven water oxidation and reduction in suspension systems. Mater. Today 2018, 21, 897–924.  doi: 10.1016/j.mattod.2018.04.009

    3. [3]

      Zhao, W.; Chen, Z.; Yang, X. R.; Qian, X. X.; Liu, C. X.; Zhou, D. T.; Sun, T.; Zhang, M.; Wei, G. Y.; Dissanayake, P. D.; Ok, Y. S. Recent advances in photocatalytic hydrogen evolution with high-performance catalysts without precious metals. Renew. Sust. Energ. Rev. 2020, 132, 110040.  doi: 10.1016/j.rser.2020.110040

    4. [4]

      Gu, J. J.; Zhang, W.; Su, H. L.; Fan, T. X.; Zhu, S. M.; Liu, Q. L.; Zhang, D. Morphology genetic materials templated from natural species. Adv. Mater. 2015, 27, 464–478.  doi: 10.1002/adma.201401413

    5. [5]

      Zan, G. T.; Wu, Q. S. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Adv. Mater. 2016, 28, 2099–2147.  doi: 10.1002/adma.201503215

    6. [6]

      Yang, X. Y.; Chen, L. H.; Li, Y.; Rooke, J. C.; Sanchezc, C.; Su, B. L. Hierarchically porous materials: synthesis strategies and structure design. Chem. Soc. Rev. 2017, 46, 481–558.  doi: 10.1039/C6CS00829A

    7. [7]

      Zhou, H.; Fan, T. X.; Zhang, D. Biotemplated materials for sustainable energy and environment: current status and challenges. ChemSusChem. 2011, 4, 1344–1387.  doi: 10.1002/cssc.201100048

    8. [8]

      Zou, W. X.; Gao, B.; Ok, Y. S.; Dong, L. Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: a critical review. Chemosphere 2019, 218, 845–859.  doi: 10.1016/j.chemosphere.2018.11.175

    9. [9]

      Kumar, A.; Sharma, G.; Naushad, M.; Al-Muhtaseb, A. H.; García-Peñas, A.; Mola, G. T.; Si, C. L.; Stadler, F. J. Bio-inspired and biomaterials-based hybrid photocatalysts for environmental detoxification: a review. Chem. Eng. J. 2020, 382, 122937.  doi: 10.1016/j.cej.2019.122937

    10. [10]

      Gautam, P. K.; Singh, A.; Misra, K.; Sahoo, A. K.; Samanta, S. K. Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment. J. Environ. Manage. 2019, 231, 734–748.  doi: 10.1016/j.jenvman.2018.10.104

    11. [11]

      Sreekanth, T. V. M.; Shim, J. J.; Lee, Y. R. Degradation of organic pollutants by bio-inspired rectangular and hexagonal titanium dioxide nanostructures. J. Photochem. Photobiol. B 2017, 169, 90–95.  doi: 10.1016/j.jphotobiol.2017.03.006

    12. [12]

      Wang, Y.; Hu, Y. J.; Hao, X.; Peng, P.; Shi, J. Y.; Peng, F.; Sun, R. C. Hydrothermal synthesis and applications of advanced carbonaceous materials from biomass: a review. Adv. Compos. Hybrid Mater. 2020, 3, 267–284.  doi: 10.1007/s42114-020-00158-0

    13. [13]

      Zhang, L. H.; Jin, Z. Y.; Huang, S. L.; Huang, X. Y.; Xu, B. H.; Hu, L.; Gui, H. Z.; Ruan, S. C.; Zeng, Y. Z. Bio-inspired carbon doped graphitic carbon nitride with booming photocatalytic hydrogen evolution. Appl. Catal. B-Environ. 2019, 246, 61–71.  doi: 10.1016/j.apcatb.2019.01.040

    14. [14]

      Mian, M. M.; Liu, G. Recent progress in biochar-supported photocatalysts: synthesis, role of biochar, and applications. RSC Adv. 2018, 8, 14237–14248.  doi: 10.1039/C8RA02258E

    15. [15]

      Zhou, H.; Fan, T. X.; Ding, J.; Zhang, D.; Guo Q. X. Bacteria-directed construction of hollow TiO2 micro/nanostructures with enhanced photocatalytic hydrogen evolution activity. Opt. Express 2012, 20, A340–A350.  doi: 10.1364/OE.20.00A340

    16. [16]

      Zhou, H.; Fan, T. X.; Zhang, D. Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates. Micropor. Mesopor. Mat. 2007, 100, 322–327.  doi: 10.1016/j.micromeso.2006.11.020

    17. [17]

      Prasad, R.; Dalvi, S. V. Sonocrystallization: monitoring and controlling crystallization using ultrasound. Chem. Eng. Sci. 2020, 226, 115911.  doi: 10.1016/j.ces.2020.115911

    18. [18]

      Shen, L. M.; Bao, N. Z.; Prevelige, P. E.; Gupta, A. Escherichia coli bacteria-templated synthesis of nanoporous cadmium sulfide hollow microrods for efficient photocatalytic hydrogen production. J. Phys. Chem. C 2010, 114, 2551–2559.  doi: 10.1021/jp910842f

    19. [19]

      Mohamed, M. A.; Zain, M. F. M.; Minggu, L. J.; Kassim, M. B.; Jaafar, J.; Amin, N. A. S.; Ng, Y. H. Revealing the role of kapok fibre as bio-template for in-situ construction of C-doped g-C3N4@C, N co-doped TiO2 core-shell heterojunction photocatalyst and its photocatalytic hydrogen production performance. Appl. Surf. Sci. 2019, 476, 205–220.  doi: 10.1016/j.apsusc.2019.01.080

    20. [20]

      Qian, J. C.; Wang, C. C.; Wang, Y. P.; Yang, Y.; Wu, Z. Y.; Song, Y. N. Activating cadmium sulfide/bio-structured carbon composites by tuning (002) crystal plane for enhanced hydrogen evolution property. Mater. Chem. Phys. 2019, 233, 254–262.  doi: 10.1016/j.matchemphys.2019.05.069

    21. [21]

      Huang, J. L.; Lin, L. Q.; Sun, D. H.; Chen, H. M.; Yang, D. P.; Li, Q. B. Bio-inspired synthesis of metal nanomaterials and applications. Chem. Soc. Rev. 2015, 44, 6330–6374.  doi: 10.1039/C5CS00133A

    22. [22]

      Buaki-Sogó, M.; Zubizarreta, L.; García-Pellicer, M.; Quijano-López, A. Sustainable carbon as efficient support for metal-based nanocatalyst: applications in energy harvesting and storage. Molecules 2020, 25, 3123.  doi: 10.3390/molecules25143123

    23. [23]

      Cao, S. W.; Yu, J. G. Carbon-based H2-production photocatalytic materials. J. Photoch. Photobio. C 2016, 27, 72–99.  doi: 10.1016/j.jphotochemrev.2016.04.002

    24. [24]

      Norouzi, O.; Kheradmand, A.; Jiang, Y. J.; Maria, F. D.; Masek, O. Superior activity of metal oxide biochar composite in hydrogen evolution under artificial solar irradiation: a promising alternative to conventional metal-based photocatalysts. Int. J. Hydrogen Energ. 2019, 44, 28698–28708.  doi: 10.1016/j.ijhydene.2019.09.119

    25. [25]

      Zha, D. W.; Li, L. F.; Pan, Y. X.; He, J. B. Coconut shell carbon nanosheets facilitating electron transfer for highly efficient visible-light-driven photocatalytic hydrogen production from water. Int. J. Hydrogen Energ. 2016, 41, 17370–17379.  doi: 10.1016/j.ijhydene.2016.07.227

    26. [26]

      Qian, J. C.; Chen, Z. G.; Sun, H.; Chen, F.; Xu, X.; Wu, Z. Y.; Li, P.; Ge, W. J. Enhanced photocatalytic H2 production on three-dimensional porous CeO2/carbon nanostructure. ACS Sustainable Chem. Eng. 2018, 6, 9691–9698.  doi: 10.1021/acssuschemeng.8b00596

    27. [27]

      Zhou, M.; Chen, J. W.; Hou, C. J.; Liu, Y. J.; Xu, S.; Yao, C.; Li, Z. Y. Organic-free synthesis of porous CdS sheets with controlled windows size on bacterial cellulose for photocatalytic degradation and H2 production. Appl. Surf. Sci. 2019, 470, 908–916.  doi: 10.1016/j.apsusc.2018.11.207

    28. [28]

      Liu, H. H.; Zhao, Q. B.; Zhou, H.; Ding, J.; Zhang, D.; Zhu, H. X.; Fan, T. X. Hydrogen evolution via sunlight water splitting on an artificial butterfly wing architecture. Phys. Chem. Chem. Phys. 2011, 13, 10872–10876.  doi: 10.1039/c1cp20787c

    29. [29]

      Sridharan, M.; Kamaraj, P.; Vennila, R.; Huh, Y. S.; Arthanareeswari, M. Bio-inspired construction of melanin-like polydopamine-coated CeO2 as a high-performance visible-light-driven photocatalyst for hydrogen production. New J. Chem. 2020, 44, 15223.  doi: 10.1039/D0NJ02234A

    30. [30]

      Kim, Y.; Coy, E.; Kim, H.; Mrówczyński, R.; Torruella, P.; Jeong, D. W.; Choi, K. S.; Jang, J. H.; Song, M. Y.; Jang, D. J.; Peiro, F.; Jurga, S.; Kim, H. J. Efficient photocatalytic production of hydrogen by exploiting the polydopamine-semiconductor interface. Appl. Catal. B-Environ. 2021, 280, 119423.  doi: 10.1016/j.apcatb.2020.119423

    31. [31]

      Sun, M. H.; Huang, S. Z.; Chen, L. H.; Li, Y.; Yang, X. Y.; Yuan, Z. Y.; Su, B. L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 2016, 45, 3479–3563.  doi: 10.1039/C6CS00135A

    32. [32]

      Zheng, X. F.; Shen, G. F.; Wang, C.; Li, Y.; Dunphy, D.; Hasan, T.; Brinker, C. J.; Su, B. L. Bio-inspired Murray materials for mass transfer and activity. Nat. Commun. 2017, 8, 14921.  doi: 10.1038/ncomms14921

    33. [33]

      Wang, P. P.; Geng, Z. B.; Gao, J. X.; Xuan, R. F.; Liu, P.; Wang, Y.; Huang, K. K.; Wan, Y. Z.; Xu, Y. ZnxCd1-xS/bacterial cellulose bionanocomposite foams with hierarchical architecture and enhanced visible-light photocatalytic hydrogen production activity. J. Mater. Chem. A 2015, 3, 1709–1716.  doi: 10.1039/C4TA05722H

    34. [34]

      Zhou, H.; Li, X. F.; Fan, T. X.; Osterloh, F. E.; Ding, J.; Sabio, E. M.; Zhang, D.; Guo, Q. X. Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis. Adv. Mater. 2010, 22, 951–956.  doi: 10.1002/adma.200902039

    35. [35]

      Zhou, H.; Ding, L.; Fan, T. X.; Ding, J.; Zhang, D.; Guo, Q. X. Leaf-inspired hierarchical porous CdS/Au/N-TiO2 heterostructures for visible light photocatalytic hydrogen evolution. Appl. Catal. B-Environ. 2014, 147, 221–228.  doi: 10.1016/j.apcatb.2013.08.025

    36. [36]

      Zhang, K. F.; Zhou, W.; Zhang, X. C.; Qu, Y.; Wang, L.; Hu, W. Y.; Pan, K.; Li, M. X.; Xie, Y.; Jiang, B. J.; Tian, G. H. Large-scale synthesis of stable mesoporous black TiO2 nanosheets for efficient solar-driven photocatalytic hydrogen evolution via earth-abundant low-cost biotemplate. RSC Adv. 2016, 6, 50506–50512.  doi: 10.1039/C6RA06751D

    37. [37]

      Liu, C. B.; Sun, H.; Qian, J. C.; Chen, Z. G.; Lv, Y. F.; Chen, F.; Lu, X. W.; Wu, Z. Y. Biotemplating synthesis and photocatalytic activities of N-doped CeO2 microcapsule tailored by hemerocallis pollen. Adv. Powder Technol. 2017, 28, 2741–2746.  doi: 10.1016/j.apt.2017.07.027

    38. [38]

      Gesesse, G. D.; Li, C. Y.; Paineau, E.; Habibi, Y.; Remita, H.; Colbeau-Justin, C.; Ghazzal, M. N. Enhanced photogenerated charge carriers and photocatalytic activity of biotemplated mesoporous TiO2 films with a chiral nematic structure. Chem. Mater. 2019, 31, 4851–4863.  doi: 10.1021/acs.chemmater.9b01465

    39. [39]

      Wang, C.; Li, J.; Paineau, E.; Laachachi, A.; Colbeau-Justin, C.; Remita, H.; Ghazzal, M. N. A sol-gel biotemplating route with cellulose nanocrystals to design a photocatalyst for improving hydrogen generation. J. Mater. Chem. A 2020, 8, 10779–1078.  doi: 10.1039/C9TA12665A

    40. [40]

      Yang, J. H.; Wang, D. E.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Accounts Chem. Res. 2013, 46, 1900–1909.  doi: 10.1021/ar300227e

    41. [41]

      Du, Z. Y.; Sun, P. J.; Wu, K. H.; Zheng, X. R.; Zhang, X. F.; Huang, J. L.; Sun, D. H.; Zheng, Y. M.; Li, Q. B. g-C3N4-SiC-Pt for enhanced photocatalytic H2 production from water under visible light irradiation. Energy Technol. 2019, 7, 1900017.  doi: 10.1002/ente.201900017

    42. [42]

      Zhang, X. F.; Wu, Q. J.; Du, Z. Y.; Zheng, Y. M.; Li, Q. B. Green synthesis of g-C3N4-Pt catalyst and application to photocatalytic hydrogen evolution from water splitting. Fuller. Nanotub. Car. N. 2018, 26, 688–695.  doi: 10.1080/1536383X.2018.1469006

  • 加载中
    1. [1]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    2. [2]

      Si-Hua Liu Jun-Hao Zhou Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    5. [5]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    6. [6]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    7. [7]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    8. [8]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    9. [9]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    10. [10]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    11. [11]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    12. [12]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    13. [13]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    14. [14]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    15. [15]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    16. [16]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    17. [17]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    18. [18]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    19. [19]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    20. [20]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

Metrics
  • PDF Downloads(22)
  • Abstract views(468)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return