Citation: Hong-Hui TAN, Xiao-Long LV, Jiang-Long LIU, Yu-Fang CHENG, Qing-Lin ZHOU, Yi-Ting LIN, Wei MENG. A 2D Layer Copper(Ⅱ) Coordination Polymer with 3-Nitrophthalic Acid: Synthesis, Crystal Structure and Copper 3-Nitrophthalate Metal-organic Framework-graphene Oxide Nanocomposite[J]. Chinese Journal of Structural Chemistry, ;2021, 40(4): 459-464. doi: 10.14102/j.cnki.0254-5861.2011-2970 shu

A 2D Layer Copper(Ⅱ) Coordination Polymer with 3-Nitrophthalic Acid: Synthesis, Crystal Structure and Copper 3-Nitrophthalate Metal-organic Framework-graphene Oxide Nanocomposite

  • Corresponding author: Wei MENG, mengw198503@163.com
  • Received Date: 28 August 2020
    Accepted Date: 29 September 2020

    Fund Project: the National Natural Science Foundation of China 22001064the Natural Science Foundation of Hunan Province 2020JJ4155the 2020 Hunan Province College Students' Innovation Entrepreneurship Training Program 3373the Scientific Research Project of Hunan Province Department of Education 20B105

Figures(4)

  • A 2D layer Cu(Ⅱ) coordination polymer [Cu(npth)(H2O)]n (1) was crystallized from a mixture of 3-nitrophthalic acid and Cu(OAc)2·H2O in water under room temperature and structurally characterized by single-crystal X-ray diffraction, FT-IR and TGA. Compound 1 was applied to make a nanocomposite with graphene oxide (GO). A highly dispersible and stable nanocomposite of Cu(npth)-GO was successfully synthesized by a simple ultrasonication method. SEM, TEM, UV-vis, FT-IR and TGA were used to characterize the morphology and structure of the prepared composite. In accordance with the characterization results, we suspected that the binding mechanism of Cu(npth) and GO was assigned to be the cooperative interaction of Cu–O coordination, π-π stacking and hydrogen bonding.
  • 加载中
    1. [1]

      Liu, X.; Wang, X.; Kapteijn, F. Water and metal-organic frameworks: from interaction toward utilization. Chem. Rev. 2020, 10.1021/acs. chemrev. 9b00746.  doi: 10.1021/acs.chemrev.9b00746

    2. [2]

      Jiang, Y.; Tan, P.; Qi, S. C.; Liu, X. Q.; Yan, J. H.; Fan, F.; Sun, L. B. Metal-organic frameworks with target-specific active sites switched by photoresponsive motifs: efficient adsorbents for tailorable CO2 capture. Angew. Chem., Int. Ed. 2019, 58, 6457–6457.  doi: 10.1002/anie.201903069

    3. [3]

      Wan, X. Y.; Zhang, G. L.; Cheng, L.; Jiang, F. L.; Hong, M. C. Metal-induced coordination networks using a C2v-based hexacarboxylate ligand: syntheses, structures and properties. Chin. J. Struct. Chem. 2019, 38, 1370–1379.

    4. [4]

      Mchugh, L. N.; Terracina, A.; Wheatley, P. S.; Buscarino, G.; Smith, M. W.; Morris, R. E. Metal-organic framework-activated carbon composite materials for the removal of ammonia from contaminated airstreams. Angew. Chem., Int. Ed. 2019, 58, 11747–11751.  doi: 10.1002/anie.201905779

    5. [5]

      Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 2, 356–366.  doi: 10.1021/acs.accounts.8b00521

    6. [6]

      Sengupta, A.; Datta, S.; Su, C. L.; Herng, T. S.; Ding, J.; Jittal, J. J.; Loh, K. P. Tunable electrical conductivity and magnetic property of the two dimensional metal organic framework [Cu(TPyP)Cu2(O2CCH3)4]. ACS Appl. Mater. Interfaces 2016, 8, 16154–16159.  doi: 10.1021/acsami.6b03073

    7. [7]

      Wang, K.; Huang, X. K.; Zhu, L.; Chen, Z. L.; Liang, F. P. A chain cadmium(Ⅱ) coordination polymer with diacylhydrazide: synthesis, crystal structure and luminescent property. Chin. J. Struct. Chem. 2016, 35, 1912–1919.

    8. [8]

      Chen, L. Y.; Li, D. Z.; Wang, Y. X.; Duan, C. Y. Highly efficient solar steam generation of supported metal-organic framework membranes by a photoinduced electron transfer process. Nanoscale 2019, 11121–11127.

    9. [9]

      Qu, F.; Li, X. N.; Lv, X. X.; You, J. M.; Han, W. L. Highly selective metal-organic framework-based sensor for protamine through photoinduced electron transfer. J. Mater. Sci. 2019, 54, 3144–3155.  doi: 10.1007/s10853-018-3041-6

    10. [10]

      Xiao, Y. H.; Gu, Z. G.; Zhang, J. Surface-coordinated metal-organic framework thin films (SURMOFs) for electrocatalytic applications. Nanoscale 2020, 12, 12712–12730.  doi: 10.1039/D0NR03115A

    11. [11]

      Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauchi, Y. Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 2015, 137, 1572–1580.  doi: 10.1021/ja511539a

    12. [12]

      Lu, C.; Ben, T.; Xu, S.; Qiu, S. Electrochemical synthesis of a microporous conductive polymer based on a metal-organic framework thin film. Angew. Chem., Int. Ed. 2014, 53, 6454–6458.  doi: 10.1002/anie.201402950

    13. [13]

      Li, S. Z.; Yang, K.; Tan, C. L.; Huang, X.; Huang, W.; Zhang, H. Preparation and applications of novel composites composed of metal-organic frameworks and two-dimensional materials. Chem. Commun. 2016, 52, 1555–1562.  doi: 10.1039/C5CC09127F

    14. [14]

      Costa, P.; Gonçalves, S.; Mora, H.; Carabineiro, S. A. C.; Viana, J. C.; Mendez, S. L. Highly sensitive piezoresistive graphene-based stretchable composites for sensing applications. ACS Appl. Mater. Interfaces 2019, 11, 46286–46295.  doi: 10.1021/acsami.9b19294

    15. [15]

      Wang, X.; Wang, Q. X.; Wang, Q. H.; Gao, F.; Yang, Y. Z.; Guo, H. X. College of highly dispersible and stable copper terephthalate metal-organic framework-graphene oxide nanocomposite for an electrochemical sensing application. ACS Appl. Mater. Interfaces 2014, 6, 11573–11580.  doi: 10.1021/am5019918

    16. [16]

      Liu, J. W.; Zhang, Y.; Chen, X. W.; Wang, J. H. Graphene oxide-rare earth metal-organic framework composites for the selective isolation of hemoglobin. ACS Appl. Mater. Interfaces 2014, 6, 10196–10204.  doi: 10.1021/am503298v

    17. [17]

      Yang, J.; Zhao, F. Q.; Zeng, B. Z. One-step synthesis of a copper-based metal-organic framework-graphene nanocomposite with enhanced electrocatalytic activity. RSC Adv. 2015, 5, 22060–22065.  doi: 10.1039/C4RA16950F

    18. [18]

      Xiao, Y.; Guo, B.; Zhang, J.; Hu, C.; Ma, R. G.; Wang, D. Y.; Wang, J. C. Bimetallic MOFs@Graphene oxide composites as efficient bifunctional oxygen electrocatalysts in rechargeable Zn-Air batteries. Dalton Trans. 2020, 49, 5730–5735.  doi: 10.1039/D0DT00976H

    19. [19]

      Meng, W.; Xu, F.; Xu, W. J. An anionic heptacopper(Ⅱ) oxo-cluster {Cu7} with an S = 7/2 ground state. Inorg. Chem. 2016, 55, 540–542.  doi: 10.1021/acs.inorgchem.5b02206

    20. [20]

      Meng, W.; Ye, H. F.; Liu, S.; Xu, F.; Xu, W. J. Emergence of complex chiral coordination clusters {Cu48Na12} by using multiple ligands under oxidizing conditions. Dalton Trans. 2019, 48, 3204–3208.  doi: 10.1039/C9DT00209J

    21. [21]

      Sheldrick, G. M. SHELXL97, Program for Crystal Structure Refinement. University of Göttingen: Göttingen, Germany 1997.

    22. [22]

      William, S.; Hummers, J.; Richard, E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1342.

    23. [23]

      Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.  doi: 10.1038/nnano.2007.451

    24. [24]

      Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Graphene oxide doped polyaniline for supercapacitors. Electrochem. Commun. 2009, 11, 1158–1161.  doi: 10.1016/j.elecom.2009.03.036

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    3. [3]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    4. [4]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    5. [5]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    6. [6]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    7. [7]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    8. [8]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    9. [9]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    10. [10]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    11. [11]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    12. [12]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    13. [13]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    14. [14]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    15. [15]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    16. [16]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    17. [17]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    18. [18]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    19. [19]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    20. [20]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

Metrics
  • PDF Downloads(2)
  • Abstract views(288)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return