Citation: Ling HUANG, Guo-Hong ZOU. Recent Progresses of UV Nonlinear Optical Materials[J]. Chinese Journal of Structural Chemistry, ;2020, 39(9): 1571-1577. doi: 10.14102/j.cnki.0254-5861.2011-2968 shu

Recent Progresses of UV Nonlinear Optical Materials

  • Corresponding author: Guo-Hong ZOU, zough@scu.edu.cn
  • Received Date: 23 August 2020
    Accepted Date: 2 September 2020

    Fund Project: National Natural Science Foundation of China 21971171National Natural Science Foundation of China 21875146

Figures(3)

  • Ultraviolet (UV) nonlinear optical (NLO) crystal materials are hailed as the "chip" of the optoelectronic industry for they play a unique and crucial role in many newly developed scientific and technological applications. At present, due to the relatively single frequency doubling gene types of traditional NLO materials, the service performance of UV NLO materials is fundamentally restricted. Therefore, there is an urgent need to develop new synthesis methods, search for novel functional groups, expand new UV NLO materials systems, screen new high-performance crystals, and then break through performance bottlenecks. Herein, we review the recent progresses on UV NLO crystal materials. Furthermore, we prospect that these recently developed approaches will continuously extend their advantages in developing superior UV NLO materials in the near future.
  • 加载中
    1. [1]

      Niu, S. Y.; Joe, G.; Zhao, H.; Zhou, Y. C.; Orvis, T.; Huyan, H. X.; Salman, J.; Mahalingam, K.; Urwin, B.; Wu, J. B.; Liu, Y.; Tiwald, T. E.; Cronin, S. B.; Howe, B. M.; Mecklenburg, M.; Haiges, R.; Singh, D. J.; Wang, H.; Kats, M. A.; Ravichandran, J. Giant optical anisotropy in a quasi-one-dimensional crystal. Nat. Photonics 2018, 12, 392–396.  doi: 10.1038/s41566-018-0189-1

    2. [2]

      Ghosh, S.; Wang, W. H.; Mendoza, F. M.; Myers, R. C.; Li, X.; Samarth, N.; Gossard, A. C.; Awschalom, D. D. Enhancement of spin coherence using Q-factor engineering in semiconductor microdisc lasers. Nat. Mater. 2006, 5, 261–264.  doi: 10.1038/nmat1587

    3. [3]

      Halasyamani, P. S.; Zhang, W. G. Viewpoint: inorganic materials for UV and deep-UV nonlinear-optical applications. Inorg. Chem. 2017, 56, 12077–12085.  doi: 10.1021/acs.inorgchem.7b02184

    4. [4]

      Ok, K. M.; Chi, E. O.; Halasyamani, P. S. Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chem. Soc. Rev. 2006, 35, 710–717.  doi: 10.1039/b511119f

    5. [5]

      Guo, J. Y.; Tudi, A.; Han, S. J.; Yang, Z. H.; Pan, S. L. Sn2B5O9Cl: a material with large birefringence enhancement activated via alkaline-earth metal substitution by tin. Angew. Chem., Int. Ed. 2019, 58, 17675–17678.  doi: 10.1002/anie.201911187

    6. [6]

      Dong, X. H.; Long, Y.; Zhao, X. Y.; Huang, L.; Zeng, H. M.; Lin, Z. E.; Wang, X.; Zou, G. H. A6Sb4F12(SO4)3 (A = Rb, Cs): two novel antimony fluoride sulfates with unique crown-like clusters. Inorg. Chem. 2020, 59, 8345–8352.  doi: 10.1021/acs.inorgchem.0c00756

    7. [7]

      Wang, Q.; Yang, F.; Wang, X.; Zhou, J.; Huang, L.; Gao, D. J.; Bi, J.; Zou, G. H. Deep-ultraviolet mixed-alkali-metal borates with induced enlarged birefringence derived from the structure rearrangement of the LiB3O5. Inorg. Chem. 2019, 58, 5949–5955.  doi: 10.1021/acs.inorgchem.9b00271

    8. [8]

      Wang, Q.; Lin, C. S.; Zou, G. H.; Liu, M. J.; Gao, D. J.; Bi, J.; Huang, L. K2[B3O3(OH)5]: a new deep-UV nonlinear optical crystal with isolated [B3O3(OH)5]2– anionic groups. J. Alloys Compd. 2018, 735, 677–683.  doi: 10.1016/j.jallcom.2017.11.174

    9. [9]

      Jiang, A. D. A new-type ultraviolet SHG crystal — β-BaB2O4. Scientia. Sinica. Series B 1985, 28, 235–243.

    10. [10]

      Chen, C. T.; Wu, Y. C.; Jiang, A. D.; Wu, B. C.; You, G. M.; Li, R. K.; Lin, S. J. New nonlinear-optical crystal: LiB3O5. J. Opt. Soc. Am. B 1989, 6, 616–621.  doi: 10.1364/JOSAB.6.000616

    11. [11]

      Mei, L. F.; Wang, Y.; Chen, C. T.; Wu, B. C. Nonlinear optical materials based on MBe2-BO3F2 (M = Na, K). J. Appl. Phys. 1993, 74, 7014–7015.  doi: 10.1063/1.355060

    12. [12]

      Chen, C. T.; Wang, Y. B.; Wu, B. C.; Wu, K. C.; Zeng, W. L.; Yu, L. H. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7. Nature 1995, 373, 322–324.  doi: 10.1038/373322a0

    13. [13]

      Song, J. L.; Hu, C. L.; Xu, X.; Kong, F.; Mao, J. G. A facile synthetic route to a new SHG material with two types of parallel p-conjugated planar triangular units. Angew. Chem., Int. Ed. 2015, 54, 3679–3682.  doi: 10.1002/anie.201412344

    14. [14]

      Dong, X. Y.; Jing, Q.; Shi, Y. J.; Yang, Z. H.; Pan, S. L.; Poeppelmeier, K. R.; Young, J.; Rondinelli, J. M. Pb2Ba3(BO3)3Cl: a material with large SHG enhancement activated by Pb-Chelated BO3 groups. J. Am. Chem. Soc. 2015, 137, 9417–9422.  doi: 10.1021/jacs.5b05406

    15. [15]

      Li, T.; Qi, X. J.; Li, J.; Zeng, H. M.; Zou, G. H.; Lin, Z. E. Using multifunctional ionic liquids in the synthesis of crystalline metal phosphites and hybrid framework solids. Inorg. Chem. 2018, 57, 14031–14034.  doi: 10.1021/acs.inorgchem.8b02519

    16. [16]

      Luan, L. D.; Li, J.; Chen, C.; Lin, Z. E.; Huang, H. Solvent-free synthesis of crystalline metal phosphate oxalates with a (4, 6)-connected fsh topology. Inorg. Chem. 2015, 54, 9387–9389.  doi: 10.1021/acs.inorgchem.5b01569

    17. [17]

      Dong, X. H.; Huang, L.; Hu, C. F.; Zeng, H. M.; Lin, Z. E.; Wang, X.; Ok, K. M.; Zou, G. H. CsSbF2SO4: an excellent ultraviolet nonlinear optical sulfate with a KTiOPO4 (KTP)-type structure. Angew. Chem., Int. Ed. 2019, 58, 6528–6534.  doi: 10.1002/anie.201900637

    18. [18]

      Dong, X. H.; Huang, L.; Liu, Q. Y.; Zeng, H. M.; Lin, Z. E.; Xu, D. G.; Zou, G. H. Perfect balance harmony in Ba2NO3(OH)3: a beryllium-free nitrate as a UV nonlinear optical material. Chem. Commun. 2018, 54, 5792–5795.  doi: 10.1039/C8CC03007C

    19. [19]

      Shi, G. Q.; Wang, Y.; Zhang, F. F.; Zhang, B. B.; Yang, Z. H.; Hou, X. L.; Pan, S. L.; Poeppelmeier, K. R. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J. Am. Chem. Soc. 2017, 139, 10645–10648.  doi: 10.1021/jacs.7b05943

    20. [20]

      Wu, B. L.; Hu, C. L.; Mao, F. F.; Tang, R. L.; Mao, J. G. Highly polarizable Hg2+ induced a strong second harmonic generation signal and large birefringence in LiHgPO4. J. Am. Chem. Soc. 2019, 141, 10188–10192.  doi: 10.1021/jacs.9b05125

    21. [21]

      Zou, G. H.; Jo, H.; Lim, S. J.; You, T. S.; Ok, K. M. Rb3VO(O2)2CO3: a four-in-one carbonatoperoxovanadate exhibiting an extremely strong second-harmonic generation response. Angew. Chem., Int. Ed. 2018, 57, 8619–8622.  doi: 10.1002/anie.201804354

    22. [22]

      Zou, G. H.; Lin, Z. E.; Zeng, H. M.; Jo, H.; Lim, S. J.; You, T. S.; Ok, K. M. Cs3VO(O2)2CO3: an exceptionally thermostable carbonatoperoxovanadate with an extremely large second-harmonic generation response. Chem. Sci. 2018, 9, 8957–8961.  doi: 10.1039/C8SC03672A

    23. [23]

      Zhang, Y. T.; Long, Y.; Dong, X. H.; Wang, L.; Huang, L.; Zeng, H. M.; Lin, Z. E.; Wang, X.; Zou, G. H. Y8O(OH)15(CO3)3Cl: an excellent short-wave UV nonlinear optical material exhibiting an infrequent three-dimensional inorganic cationic framework. Chem. Commun. 2019, 55, 4538–4541.  doi: 10.1039/C9CC00581A

    24. [24]

      Zou, G. H.; Lin, C. S.; Kim, H. G.; Jo, H.; Ok, K. M. Rb2Na(NO3)3: a congruently melting UV-NLO crystal with a very strong second-harmonic generation response. Crystals 2016, 6, 42.  doi: 10.3390/cryst6040042

    25. [25]

      Wang, L.; Yang, F.; Zhao, X. Y.; Huang, L.; Gao, D. J.; Bi, J.; Wang, X.; Zou, G. H. Rb3SbF3(NO3)3: an excellent antimony nitrate nonlinear optical material with a strong second harmonic generation response fabricated by a rational multi-component design. Dalton Trans. 2019, 48, 15144–15150.  doi: 10.1039/C9DT03233A

    26. [26]

      Huang, L.; Wang, Q.; Lin, C. S.; Zou, G. H.; Gao, D. J.; Bi, J.; Ye, N. Synthesis and characterization of a new beryllium-free deep-ultraviolet nonlinear optical material: Na2GdCO3F3. J. Alloys Compd. 2017, 724, 1057–1063.  doi: 10.1016/j.jallcom.2017.07.120

    27. [27]

      Wang, Q.; He, F. F.; Huang, L.; Gao, D. J.; Bi, J.; Zou, G. H. Exploring potential beryllium-free, deep-ultraviolet optical crystals in the rare earth fluoride carbonate-water system. Cryst. Growth Des. 2018, 18, 3644–3653.  doi: 10.1021/acs.cgd.8b00431

    28. [28]

      Li, Q. F.; Zou, G. H.; Lin, C. S.; Ye, N. Synthesis and characterization of CsSrCO3F — a beryllium-free new deep-ultraviolet nonlinear optical material. New J. Chem. 2016, 40, 2243–2248.  doi: 10.1039/C5NJ03059E

    29. [29]

      Lin, D. H.; Luo, M.; Lin, C. S.; Xu, F.; Ye, N. KLi(HC3N3O3)·2H2O: solvent-drop grinding method toward the hydro-isocyanurate nonlinear optical crystal. J. Am. Chem. Soc. 2019, 141, 3390–3394.  doi: 10.1021/jacs.8b13280

    30. [30]

      Wu, Y. C.; Sasaki, T.; Nakai, S.; Yokotani, A.; Tang, H.; Chen, C. T. CsB3O5: a new nonlinear optical crystal. Appl. Phys. Lett. 1993, 62, 2614–2615.  doi: 10.1063/1.109262

    31. [31]

      Tu, J. M.; Keszler, D. A. CsLiB6O10: a noncentrosymmetric polyborate. Mater. Res. Bull. 1995, 30, 209–215.  doi: 10.1016/0025-5408(94)00121-9

    32. [32]

      Hu, Z. G.; Higashiyama, T.; Yoshimura, M.; Yap, Y. K.; Mori, Y.; Sasaki., T. A new nonlinear optical borate crystal K2Al2B2O7 (KAB). Jpn. J. Appl. Phys. 1998, 37, L1093–L1094.  doi: 10.1143/JJAP.37.L1093

    33. [33]

      Zou, G. H.; Ye, N.; Huang, L.; Lin, X. S. Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials. J. Am. Chem. Soc. 2011, 133, 20001–20007.  doi: 10.1021/ja209276a

    34. [34]

      Yu, P.; Wu, L. M.; Zhou, L. J.; Chen, L. Deep-ultraviolet non-linear optical crystals: Ba3P3O10X (X = Cl, Br). J. Am. Chem. Soc. 2014, 136, 480–487.  doi: 10.1021/ja411272y

    35. [35]

      Zhao, S. G.; Yang, X. Y.; Yang, Y.; Kuang, X. J.; Lu, F. Q.; Shan, P.; Sun, Z. H.; Lin, Z. S.; Hong, M. C.; Luo, J. H. Non-centrosymmetric RbNaMgP2O7 with unprecedented thermo-induced enhancement of second harmonic generation. J. Am. Chem. Soc. 2018, 140, 1592–1595.  doi: 10.1021/jacs.7b12518

    36. [36]

      Yang, F.; Huang, L. J.; Zhao, X. Y.; Huang, L.; Gao, D. J.; Bi, J.; Wang, X.; Zou, G. H. An energy band engineering design to enlarge the band gap of KTiOPO4 (KTP)-type sulfates via aliovalent substitution. J. Mater. Chem. C 2019, 7, 8131–8138.  doi: 10.1039/C9TC02180A

    37. [37]

      He, F. F.; Wang, L.; Hu, C. F.; Zhou, J.; Li, Q.; Huang, L.; Gao, D. J.; Bi, J.; Wang, X.; Zou, G. H. Cation-tuned synthesis of the A2SO4·SbF3 (A = Na+, NH4+, K+, Rb+) family with nonlinear optical properties. Dalton Trans. 2018, 47, 17486–17492.  doi: 10.1039/C8DT04400G

    38. [38]

      Wang, Q.; Wang, L.; Zhao, X. Y.; Huang, L.; Gao, D. J.; Bi, J.; Wang, X.; Zou, G. H. Centrosymmetric K2SO4·(SbF3)2 and noncentrosymmetric Rb2SO4·(SbF3)2 resulting from cooperative effects of lone pair and cation size. Inorg. Chem. Front. 2019, 6, 3125–3132.  doi: 10.1039/C9QI01036J

    39. [39]

      He, F. F.; Deng, Y. L.; Zhao, X. Y.; Huang, L.; Gao, D. J.; Bi, J.; Wang, X.; Zou, G. H. RbSbSO4Cl2: an excellent sulfate nonlinear optical material generated due to the synergistic effect of three asymmetric chromophores. J. Mater. Chem. C 2019, 7, 5748–5754.  doi: 10.1039/C9TC01249D

    40. [40]

      He, F. F.; Wang, Q.; Hu, C. F.; He, W.; Luo, X. Y.; Huang, L.; Gao, D. J.; Bi, J.; Wang, X.; Zou, G. H. Centrosymmetric (NH4)2SbCl(SO4)2 and noncentrosymmetric (NH4)SbCl2(SO4): synergistic effect of hydrogen-bonding interactions and lone-pair cations on the framework structures and macroscopic centricities. Cryst. Growth Des. 2018, 18, 6239–6247.  doi: 10.1021/acs.cgd.8b01102

    41. [41]

      Yu, H. W.; Young, J.; Wu, H. P.; Zhang, W. G.; Rondinelli, J. M.; Halasyamani, P. S. M4Mg4(P2O7)3 (M = K, Rb): structural engineering of pyrophosphates for nonlinear optical applications. Chem. Mater. 2017, 29, 1845–1855.  doi: 10.1021/acs.chemmater.7b00167

    42. [42]

      Chen, C.; Sasaki, T.; Li, R. K.; Wu, Y.; Lin, Z.; Mori, Y.; Hu, Z.; Wang, J.; Uda, S.; Yoshimura, M.; Kaneda, Y. Nonlinear Optical Borate Crystals; Wiley-VCH: Weinheim, Germany 2012.

    43. [43]

      Zou, G. H.; Lin, C. S.; Jo, H.; Nam, G.; You, T. S.; Ok, K. M. Pb2BO3Cl: a tailor-made polar lead borate chloride with very strong second harmonic generation. Angew. Chem., Int. Ed. 2016, 128, 12257–12261.  doi: 10.1002/ange.201606782

    44. [44]

      Zou, G. H.; Ok, K. M. Novel ultraviolet (UV) nonlinear optical (NLO) materials discovered by chemical substitution-oriented design. Chem. Sci. 2020, 11, 5404–5409.  doi: 10.1039/D0SC01936D

    45. [45]

      Yang, F.; Wang, L.; Huang, L.; Zou, G. H. The study of structure evolvement of KTiOPO4 family and their nonlinear optical properties. Coord. Chem. Rev. 2020, 423, 213491.  doi: 10.1016/j.ccr.2020.213491

    46. [46]

      Yue, Z.; Lu, Z.; Xue, H.; Guo, S. KBiCl2SO4: the first bismuth chloride sulfate being second-order nonlinear optical active. Cryst. Growth Des. 2019, 7, 3843–3850.

  • 加载中
    1. [1]

      Hongyuan ShaDongling YangYanran ShangZujian WangRongbing SuChao HeXiaoming YangXifa Long . Trithionic guanidine: A novel semi-organic short-wave ultraviolet nonlinear optical sulfate with dimeric heteroleptic tetrahedra. Chinese Chemical Letters, 2025, 36(4): 109730-. doi: 10.1016/j.cclet.2024.109730

    2. [2]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    3. [3]

      Lihua GaoYinglei HanChensheng LinHuikang JiangGuang PengGuangsai YangJindong ChenNing Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529

    4. [4]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    5. [5]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    6. [6]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    7. [7]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    8. [8]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    9. [9]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    10. [10]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    11. [11]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    12. [12]

      Dexuan XiaoTianyu ChenTianxu ZhangSirong ShiMei ZhangXin QinYunkun LiuLongjiang LiYunfeng Lin . Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chinese Chemical Letters, 2024, 35(4): 108602-. doi: 10.1016/j.cclet.2023.108602

    13. [13]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    14. [14]

      Kai WangYun WangLihang WangZhuhai LiXi YuXuanhe YouDiwei WuYueming SongJiancheng ZengZongke ZhouShishu HuangYunfeng Lin . Therapeutic siRNA targeting CC chemokine receptor 2 loaded with tetrahedral framework nucleic acid alleviates neuropathic pain by regulating microglial polarization. Chinese Chemical Letters, 2025, 36(3): 109868-. doi: 10.1016/j.cclet.2024.109868

    15. [15]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    16. [16]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    17. [17]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    18. [18]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212

    19. [19]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    20. [20]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

Metrics
  • PDF Downloads(1)
  • Abstract views(311)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return