Citation: Qing-Xiu HE, Guang-Ping LI, Hai-Qiong GUO, Yu-Xuan WANG, Han CHU, Yong HU, Yan SHEN, Zhi-Hua LIN, Yuan-Qiang WANG. Discovery of Potential SARS-CoV-2 M Protease Inhibitors by Virtual Screening, Molecular Dynamics, and Binding Free Energy Analyses[J]. Chinese Journal of Structural Chemistry, ;2021, 40(4): 431-442. doi: 10.14102/j.cnki.0254-5861.2011-2966 shu

Discovery of Potential SARS-CoV-2 M Protease Inhibitors by Virtual Screening, Molecular Dynamics, and Binding Free Energy Analyses

  • Corresponding author: Zhi-Hua LIN, zhlin@cqut.edu.cn Yuan-Qiang WANG, wangyqnn@cqut.edu.cn
  • ② These authors have equal contribution to the study
  • Received Date: 28 August 2020
    Accepted Date: 29 October 2020

    Fund Project: the National Natural Science Foundation of China 31400667Chongqing Municipal Education Commission Science and Technology Research Project KJZD-K201801102Chongqing Research Program of Basic Research and Frontier Technology cstc2018jcyjAX0683Opening Foundation of State Key Laboratory of Silkworm Genome Biology sklsgb1819-2

Figures(7)

  • The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) gained tremendous attention due to its high infectivity and pathogenicity. The 3-chymotrypsin-like hydrolase protease (Mpro) of SARS-CoV-2 has been proven to be an important target for anti-SARS-CoV-2 activity. To better identify the drugs with potential in treating coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 and according to the crystal structure of Mpro, we conducted a virtual screening of FDA-approved drugs and chemical agents that have entered clinical trials. As a result, 9 drug candidates with therapeutic potential for the treatment of COVID-19 and with good docking scores were identified to target SARS-CoV-2. Consequently, molecular dynamics (MD) simulation was performed to explore the dynamic interactions between the predicted drugs and Mpro. The binding mode during MD simulation showed that hydrogen bonding and hydrophobic interactions played an important role in the binding processes. Based on the binding free energy calculated by using MM/PBSA, Lopiravir, an inhibitor of human immunodeficiency virus (HIV) protease, is under investigation for the treatment of COVID-19 in combination with ritionavir, and it might inhibit Mpro effectively. Moreover, Ombitasvir, an inhibitor for non-structural protein 5A of hepatitis C virus (HCV), has good inhibitory potency for Mpro. It is notable that the GS-6620 has a binding free energy, with respect to binding Mpro, comparable to that of ombitasvir. Our study suggests that ombitasvir and lopinavir are good drug candidates for the treatment of COVID-19, and that GS-6620 has good anti-SARS-CoV-2 activity.
  • 加载中
    1. [1]

      Bassetti, M.; Vena, A.; Roberto Giacobbe Giacobbe, D. R. The novel Chinese coronavirus (2019-nCoV) infections: challenges for fighting the storm. Eur. J. Clin. Invest. 2020, e13209−4.

    2. [2]

      Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Liu, Y.; Wei, Y.; Xia, J. A.; Yu, T.; Zhang, X. X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020, 395, 507−513.  doi: 10.1016/S0140-6736(20)30211-7

    3. [3]

      Huang, C. L.; Wang, Y. M.; Li, X. W.; Ren, L. L.; Zhao, J. P.; Hu, Y.; Zhang, L.; Fan, G. H.; Xu, J. Y.; Gu, X. Y.; Cheng, Z. S.; Yu, T.; Xia, J. A.; Wei, Y.; Wu, W. J.; Xie, X. L.; Yin, W.; Li, H.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497−506.  doi: 10.1016/S0140-6736(20)30183-5

    4. [4]

      Hui, D. S.; Azhar, E. I.; Madani, T. A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; Mchugh, T. D.; Memish, Z. A. Arabia, H. R. S.; Drosten, C.; Germany, B.; Zumla, A.; Petersen, E.; Zumla, A. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health – The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 2020, 91, 264−266.  doi: 10.1016/j.ijid.2020.01.009

    5. [5]

      Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci. 2020, 63, 457−460.  doi: 10.1007/s11427-020-1637-5

    6. [6]

      Gallagher, T. M.; Buchmeier, M. J. Coronavirus spike proteins in viral entry and pathogenesis. Virology 2001, 279, 371−374.  doi: 10.1006/viro.2000.0757

    7. [7]

      Liu, X.; Wang, X. J. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J. Genet. Genom. 2020, 119–121.

    8. [8]

      Seah, I.; Su, X.; Lingam, G. Revisiting the dangers of the coronavirus in the ophthalmology practice. Nature 2020, 1−3.

    9. [9]

      Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A. C.; Zhou, J.; Liu, W. J.; Bi, Y. H.; Gao, G. F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016, 24, 490−502.  doi: 10.1016/j.tim.2016.03.003

    10. [10]

      Wang, W.; Tang, J.; Wei, F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J. Med. Virol. 2020, 92, 441−447.  doi: 10.1002/jmv.25689

    11. [11]

      Pang, J.; Wang, M. X.; Ang, I. Y. H.; Tan, S. H. X.; Lewis, R. F.; Chen, J. I. P.; Gutierrez, R. A.; Gwee, S.; X.; W.; Chua, P. E. Y.; Yang, Q.; Ng, X. Y.; Yap, R. K. S.; Tan, H. Y.; Teo, Y. Y.; Tan, C. C.; Cook, A. R.; Yap, J. C. H.; Hsu, L. Y. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-nCoV): a systematic review. J. Clin. Med. 2020, 9, 623−623.  doi: 10.3390/jcm9030623

    12. [12]

      Andersen, K. G.; Rambaut, A.; Lipkin, W. I.; Holmes, E. C. The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26, 450−452.  doi: 10.1038/s41591-020-0820-9

    13. [13]

      Jain, A. N. Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities. J. Comput. Aid. Mol. Des. 1996, 10, 427−440.  doi: 10.1007/BF00124474

    14. [14]

      Feng, Z.; Pearce, L. V.; Xu, X.; Yang, X.; Yang, P.; Blumberg, P. M.; Xie, X. Q. Structural insight into tetrameric hTRPV1 from homology modeling, molecular docking, molecular dynamics simulation, virtual screening, and bioassay validations. J. Chem. Inf. Model. 2015, 55, 572−588.  doi: 10.1021/ci5007189

    15. [15]

      Chen, J. Z.; Wang, J.; Xie, X. Q. GPCR structure-based virtual screening approach for CB2 antagonist search. J. Chem. Inf. Model. 2007, 47, 1626−1637.  doi: 10.1021/ci7000814

    16. [16]

      Sheng, S.; Wang, J.; Wang, L.; Liu, H.; Li, P.; Liu, M.; Long, C. F.; Xie, C. S.; Xie, X. Q.; Su, W. Network pharmacology analyses of the antithrombotic pharmacological mechanism of Fufang Xueshuantong Capsule with experimental support using disseminated intravascular coagulation rats. J. Ethnopharmacol. 2014, 154, 735−744.  doi: 10.1016/j.jep.2014.04.048

    17. [17]

      Feng, Z. W.; Kochanek, S.; Close, D.; Wang, L. R.; Srinivasan, A.; Almehizia, A. A.; Iyer, P.; Xie, X. Q.; Johnston, P. A.; Gold, B. Design and activity of AP endonuclease-1 inhibitors. J. Chem. Biol. 2015, 8, 79−93.  doi: 10.1007/s12154-015-0131-7

    18. [18]

      Feng, Z. W.; Pearce, L. V.; Zhang, Y.; Xing, C.; Herold, B. K.; Ma, S.; Hu, Z.; Turcios, N. A.; Yang, P.; Tong, Q.; Blumberg, P. M.; McCall, A. K. Multi-functional diarylurea small molecule inhibitors of TRPV1 with therapeutic potential for neuroinflammation. AAPS J. 2016, 18, 898−913.  doi: 10.1208/s12248-016-9888-z

    19. [19]

      Wang, Y. Q.; Guo, H. Q.; Feng, Z. W.; Wang, S. Y.; Wang, Y. X.; He, Q. X.; Li, G. P.; Lin, W. W.; Xie, X. Q.; Lin, Z. H. PD-1-targeted discovery of peptide inhibitors by virtual screening, molecular dynamics simulation, and surface plasmon resonance. Molecules 2019, 24, 3784−15.  doi: 10.3390/molecules24203784

    20. [20]

      Salomon-Ferrer, R.; Götz, A. W.; Poole, D.; Le Grand, S.; Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878−3888.  doi: 10.1021/ct400314y

    21. [21]

      Gotz, A. W.; Williamson, M. J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J. Chem. Theory Comput. 2012, 8, 1542−1555.  doi: 10.1021/ct200909j

    22. [22]

      Loncharich, R. J.; Brooks, B. R.; Pastor, R. W. Langevin dynamics of peptides: the frictional dependence of isomerization rates of N-acetylalanyl-N΄-methylamide. Biopolymers 1992, 32, 523−535.  doi: 10.1002/bip.360320508

    23. [23]

      Izaguirre, J. A.; Catarello, D. P.; Wozniak, J. M.; Skeel, R. D. Langevin stabilization of molecular dynamics. J. Phys. Chem. 2001, 114, 2090−2098.  doi: 10.1063/1.1332996

    24. [24]

      Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J. Phys. Chem. 1993, 98, 10089−10092.  doi: 10.1063/1.464397

    25. [25]

      Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A smooth particle mesh Ewald method. J. Phys. Chem. 1995, 103, 8577−8593.  doi: 10.1063/1.470117

    26. [26]

      Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327−341.  doi: 10.1016/0021-9991(77)90098-5

    27. [27]

      Wang, Y. Q.; Lin, W. W.; Wu, N.; Wang, S. Y.; Chen, M. Z.; Lin, Z. H.; Xie, X. Q.; Feng, Z. W. Structural insight into the serotonin (5-HT) receptor family by molecular docking, molecular dynamics simulation and systems pharmacology analysis. Acta Pharmacol. Sin. 2019, 40, 1138−1156.  doi: 10.1038/s41401-019-0217-9

    28. [28]

      Wang, J.; Hou, T. Develop and test a solvent accessible surface area-based model in conformational entropy calculations. J. Chem. Inf. Model. 2012, 52, 1199−1212.  doi: 10.1021/ci300064d

    29. [29]

      Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. J. Phys. Chem. 1996, 100, 19824−19839.  doi: 10.1021/jp961710n

    30. [30]

      Wang, W.; Kollman, P. A. Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model. J. Mol. Biol. 2000, 303, 567−582.  doi: 10.1006/jmbi.2000.4057

    31. [31]

      Sun, H.; Duan, L.; Chen, F.; Liu, H.; Wang, Z.; Pan, P.; Zhu, F.; John Zhang, Z. H.; Hou, T. J. Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches. Phys. Chem. Chem. Phys. 2018, 20, 14450−14460.  doi: 10.1039/C7CP07623A

    32. [32]

      Chen, F.; Liu, H.; Sun, H.; Pan, P.; Li, Y.; Li, D.; Hou, T. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Phys. Chem. Chem. Phys. 2016, 18, 22129−22139.  doi: 10.1039/C6CP03670H

    33. [33]

      Sun, H.; Li, Y.; Shen, M.; Tian, S.; Xu, L.; Pan, P.; Guan, Y.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys. Chem. Chem. Phys. 2014, 16, 22035−22045.  doi: 10.1039/C4CP03179B

    34. [34]

      Sun, H.; Li, Y.; Tian, S.; Xu, L.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys. Chem. Chem. Phys. 2014, 16, 16719−16729.  doi: 10.1039/C4CP01388C

    35. [35]

      Tsui, V.; Case, D. A. Theory and applications of the generalized Born solvation model in macromolecular simulations. Biopolymers 2000, 56, 275−291.  doi: 10.1002/1097-0282(2000)56:4<275::AID-BIP10024>3.0.CO;2-E

    36. [36]

      Bashford, D.; Case, D. A. Generalized born models of macromolecular solvation effects. Annu. Rev. Phys. Chem. 2000, 51, 129−152.  doi: 10.1146/annurev.physchem.51.1.129

    37. [37]

      Sitkoff, D.; Sharp, K. A.; Honig, B. Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem. 1994, 98, 1978−1988.  doi: 10.1021/j100058a043

    38. [38]

      Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T. Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Chem. Sci. 1990, 112, 6127−6129.

    39. [39]

      Weiser, J.; Shenkin, P. S.; Still, W. C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J. Comput. Chem. 1999, 20, 217−230.  doi: 10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A

    40. [40]

      Hu, J.; Feng, Z.; Ma, S.; Zhang, Y.; Tong, Q.; Alqarni, M. H.; Gou, X.; Xie, X. Q. Difference and influence of inactive and active states of cannabinoid receptor subtype CB2: from conformation to drug discovery. J. Chem. Inf. Model. 2016, 56, 1152−1163.  doi: 10.1021/acs.jcim.5b00739

    41. [41]

      Ekins, S.; Mottin, M.; Ramos, P. R.; Sousa, B. K.; Neves, B. J.; Foil, D. H.; Zorn, K. M.; Braga, R. C.; Coffee, M.; Southan, C.; Puhl, A. C. Déjà vu: stimulating open drug discovery for SARS-CoV-2. Drug. Discov. Today 2020, 5, 928−941.

    42. [42]

      Sk, M. F.; Roy, R.; Jonniya, N. A.; Poddar, S.; Kar, P. Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. J. Biomol. Struct. Dyn. 2020, 0739, 1−21.

    43. [43]

      Yin, W. C.; Mao, C. Y.; Luan, X. D.; Shen, D. D.; Shen, Q. Y.; Su, H. X.; Wang, X. X.; Zhou, F. L.; Zhao, W. F.; Gao, M. Q.; Chang, S. H.; Xie, Y. C.; Tian, G. H.; Jiang, H. W.; Tao, S. C.; Shen, J. S.; Jiang, Y.; Jiang, H. L.; Xu, Y. C.; Zhang, S. Y.; Zhang, Y.; Xu, H. Y. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by Remdesivir. Science 2020, 6498, 1499−1504.

  • 加载中
    1. [1]

      Xixian SunShengke LiRuibing WangLeyong Wang . Functional macrocyclic arenes with active binding sites inside cavity for biomimetic molecular recognition. Chinese Chemical Letters, 2025, 36(4): 110806-. doi: 10.1016/j.cclet.2024.110806

    2. [2]

      Yunxin LiJinghui ZhangJisen ChenFeng ZhuZhiqiang LiuPeng BaoWei ShenSheng Tang . Detection of SARS-CoV-2 based on artificial intelligence-assisted smartphone: A review. Chinese Chemical Letters, 2024, 35(7): 109220-. doi: 10.1016/j.cclet.2023.109220

    3. [3]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    4. [4]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    5. [5]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    6. [6]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    7. [7]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    8. [8]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    9. [9]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    10. [10]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    11. [11]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    12. [12]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    13. [13]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    14. [14]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    15. [15]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    16. [16]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    17. [17]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    18. [18]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    19. [19]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    20. [20]

      Kai YeZhicheng YeChuantao WangZhilai LuoCheng LianChunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033

Metrics
  • PDF Downloads(2)
  • Abstract views(290)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return