Citation: Qian-Ting XU, Sheng-Ping GUO. Middle-infrared Second-order Nonlinear Optical Chalcogenides and Halides Containing Multiple Anions[J]. Chinese Journal of Structural Chemistry, ;2020, 39(9): 1564-1570. doi: 10.14102/j.cnki.0254-5861.2011-2962 shu

Middle-infrared Second-order Nonlinear Optical Chalcogenides and Halides Containing Multiple Anions

  • Corresponding author: Sheng-Ping GUO, spguo@yzu.edu.cn
  • Received Date: 17 August 2020
    Accepted Date: 31 August 2020

    Fund Project: the National Natural Science Foundation of China 21771159

Figures(6)

  • The second-order nonlinear optical (NLO) materials play an important role in the application and development of laser techniques. For various candidates, those in the middle infrared (MIR) region are far from the market's requirement. Therefore, it is necessary to explore new ones with better performance. For their exploration, the inclusion of multiple anions in one structure has been proved to be a successful strategy. The NLO property contains several aspects, and different anions may contribute to different aspects. Therefore, the multiple anions' combination may give an opportunity to obtain NLO materials with desirable properties. Here, we make a short but clear summary on the MIR NLO-active chalcogenides and halides containing multiple anions, as most of them exhibit nice NLO performances.
  • 加载中
    1. [1]

      Lin, H.; Wei, W. B.; Chen, H.; Wu, X. T.; Zhu, Q. L. Rational design of infrared nonlinear optical chalcogenides by chemical substitution. Coord. Chem. Rev. 2020, 406, 213150.  doi: 10.1016/j.ccr.2019.213150

    2. [2]

      Liang, F.; Kang, L.; Lin, Z. S.; Wu, Y. C.; Chen, C. T. Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures. Coord. Chem. Rev. 2017, 333, 57–70.  doi: 10.1016/j.ccr.2016.11.012

    3. [3]

      Chen, M. M.; Xue, H. G.; Guo, S. P. Multinary metal chalcogenides with tetrahedral structures for second-order nonlinear optical, photocatalytic, and photovoltaic applications. Coord. Chem. Rev. 2018, 368, 115–133.  doi: 10.1016/j.ccr.2018.04.014

    4. [4]

      Guo, S. P.; Chi, Y.; Guo, G. C. Recent achievements on middle and far-infrared second-order nonlinear optical materials. Coord. Chem. Rev. 2017, 335, 44–57.  doi: 10.1016/j.ccr.2016.12.013

    5. [5]

      Pan, Y.; Guo, S. P.; Liu, B. W.; Xue, H. G.; Guo, G. C. Second-order nonlinear optical crystals with mixed anions. Coord. Chem. Rev. 2018, 374, 464–496.  doi: 10.1016/j.ccr.2018.07.013

    6. [6]

      Gao, L.; Huang, J. B.; Guo, S.; Yang, Z. H.; Pan, S. L. Structure-property survey and computer-assisted screening of mid-infrared nonlinear optical chalcohalides. Coord. Chem. Rev. 2020, 421, 213379.  doi: 10.1016/j.ccr.2020.213379

    7. [7]

      Xiao, J. R.; Yang, S. H.; Feng, F.; Xue, H. G.; Guo, S. P. A review of the structural chemistry and physical properties of metal chalcogenide halides. Coord. Chem. Rev. 2017, 347, 23–47.  doi: 10.1016/j.ccr.2017.06.010

    8. [8]

      Guo, S. P.; Chi, Y.; Xue, H. G. SnI4·(S8)2: a novel adduct-type infrared second-order nonlinear optical crystal. Angew Chem. Int. Ed. 2018, 57, 11540–11543.  doi: 10.1002/anie.201803482

    9. [9]

      Guo, S. P.; Sun, Z. D.; Chi, Y.; Xue, H. G. Adduct-type IR nonlinear-optical crystal SbI3·(S8)3 with a large second-harmonic generation and a high laser-induced damage threshold. Inorg. Chem. 2018, 57, 11282–11288.  doi: 10.1021/acs.inorgchem.8b01999

    10. [10]

      Lu, Z. T.; Sun, Z. D.; Chi, Y.; Xue, H. G.; Guo, S. P. Balanced second-order nonlinear optical properties of adducts CHI3·(S8)3 and AsI3·(S8)3: a systematic survey. Inorg. Chem. 2019, 58, 4619–4625.  doi: 10.1021/acs.inorgchem.9b00190

    11. [11]

      Guo, S. P.; Guo, G. C.; Wang, M. S.; Zou, J. P.; Zeng, H. Y.; Cai, L. Z.; Huang, J. S. A facile approach to hexanary chalcogenoborate featuring a 3-D chiral honeycomb-like open-framework constructed from rare-earth consolidating thiogallate-closo-dodecaborate. Chem. Commun. 2009, 29, 4366–4368.

    12. [12]

      Guo, S. P.; Chi, Y.; Liu, B. W.; Guo, G. C. Synthesis, crystal structure and second-order nonlinear optical property of a novel pentanary selenide (K3I)[InB12(InSe4)3]. Dalton Trans. 2016, 45, 10459–10465.  doi: 10.1039/C6DT01602B

    13. [13]

      Sun, Z. D.; Chi, Y.; Xue, H. G.; Guo, S. P. A series of pentanary inorganic supramolecular sulfides (A3X)[MB12(MS4)3] (A = K, Cs; X = Cl, Br, I; M = Ga, In, Gd) featuring B12S12 clusters. Inorg. Chem. Front. 2017, 4, 1841–1847.  doi: 10.1039/C7QI00396J

    14. [14]

      Liu, B. W.; Jiang, X. M.; Zeng, H. Y.; Guo, G. C. [ABa2Cl][Ga4S8] (A = Rb, Cs): wide-spectrum nonlinear optical materials obtained by polycation-substitution-induced nonlinear optical (NLO)-functional motif ordering. J. Am. Chem. Soc. 2020, 142, 10641–10645.  doi: 10.1021/jacs.0c04738

    15. [15]

      Liu, B. W.; Jiang, X. M.; Li, B. X.; Zeng, H. Y.; Guo, G. C. Li[LiCs2Cl][Ga3S6]: a nanoporous framework of GaS4 tetrahedra with excellent nonlinear optical performance. Angew Chem. Int. Ed. 2020, 59, 4856–4859.  doi: 10.1002/anie.201912416

    16. [16]

      Liu, B. W.; Zeng, H. Y.; Jiang, X. M.; Guo, G. C. Phase matching achieved by bandgap widening in infrared nonlinear optical materials [ABa3Cl2][Ga5S10] (A = K, Rb, and Cs). CCS Chem. 2020, 2, 964–973.

    17. [17]

      Li, X. H.; Suen, N. T.; Chi, Y.; Sun, Y. L.; Gong, A.; Xue, H. G.; Guo, S. P. Partial congener substitution induced centrosymmetric to noncentrosymmetric transformation witnessed by K3Ga3(Ge7-xMx)Se20 (M = Si, Sn) and their nonlinear optical properties. Inorg. Chem. 2019, 58, 13250–13257.  doi: 10.1021/acs.inorgchem.9b02113

    18. [18]

      Li, Y. N.; Chi, Y.; Sun, Z. D.; Xue, H. G.; Suen, N. T.; Guo, S. P. Partial substitution induced centrosymmetric to noncentrosymmetric structure transformation and promising second-order nonlinear optical properties of (K0.38Ba0.81)Ga2Se4. Chem Commun. 2019, 55, 13701–13704.  doi: 10.1039/C9CC07112A

    19. [19]

      Li, Y. N.; Xue, H. G.; Guo, S. P. (Na0.60Ba0.70)Ga2Se4: an infrared nonlinear optical crystal designed using AgGaSe2 as the template. Inorg. Chem. 2020, 59, 3546–3550.  doi: 10.1021/acs.inorgchem.0c00196

    20. [20]

      Feng, K.; Kang, L.; Lin, Z. S.; Yao, J. Y.; Wu, Y. C. Noncentrosymmetric chalcohalide NaBa4Ge3S10Cl with large band gap and IR NLO response. J. Mater. Chem. C 2014, 2, 4590–4596.  doi: 10.1039/C4TC00060A

    21. [21]

      Yu, P.; Zhou, L. J.; Chen, L. Noncentrosymmetric inorganic open-framework chalcohalides with strong middle IR SHG and red emission: Ba3AGa5Se10Cl2 (A = Cs, Rb, K). J. Am. Chem. Soc. 2012, 134, 2227–2235.  doi: 10.1021/ja209711x

    22. [22]

      Li, Y. Y.; Liu, P. F.; Hu, L.; Chen, L.; Lin, H.; Zhou, L. J.; Wu, L. M. Strong IR NLO material Ba4MGa4Se10Cl2: highly improved laser damage threshold via dual ion substitution synergy. Adv. Opt. Mater. 2015, 3, 957–966.  doi: 10.1002/adom.201500038

    23. [23]

      Wang, R. Q.; Guo, Y. W.; Zhang, X.; Xiao, Y.; Yao, J. Y.; Huang, F. Q. Sr5Ga8O3S14: a nonlinear optical oxysulfide with melilite-derived structure and wide band gap. Inorg. Chem. 2020, 59, 9944–9950.  doi: 10.1021/acs.inorgchem.0c01111

    24. [24]

      Tsujimoto, Y.; Juillerat, C. A.; Zhang, W.; Fujii, K.; Yashima, M.; Halasyamani, P. S.; zur Loye, H. C. Function of tetrahedral ZnS3O building blocks in the formation of SrZn2S2O: a phase matchable polar oxysulfide with a large second harmonic generation response. Chem. Mater. 2018, 30, 6486–6493.  doi: 10.1021/acs.chemmater.8b02967

    25. [25]

      Liu, B. W.; Jiang, X. M.; Wang, G. E.; Zeng, H. Y.; Zhang, M. J.; Li, S. F.; Guo, W. H.; Guo, G. C. Oxychalcogenide BaGeOSe2: highly distorted mixed-anion building units leading to a large second-harmonic generation response. Chem. Mater. 2015, 27, 8189–8192.  doi: 10.1021/acs.chemmater.5b03649

    26. [26]

      Wang, R. Q.; Liang, F.; Wang, F. K; Guo, Y. W.; Zhang, X.; Xiao, Y.; Bu, K. J.; Lin, Z. S.; Yao, J. Y.; Zhai, T. Y.; Huang, F. Q. Sr6Cd2Sb6O7S10: strong SHG response activated by highly polarizable Sb/O/S groups. Angew Chem. Int. Ed. 2019, 58, 8078–8081.  doi: 10.1002/anie.201902806

    27. [27]

      Guo, S. P.; Guo, G. C. Crystal structure and magnetic and photocatalytic properties of a new ternary rare-earth mixed chalcogenide, Dy4S4Te3. J. Mater. Chem. A 2014, 2, 20621–20628.  doi: 10.1039/C4TA04757E

    28. [28]

      Chi, Y.; Rong, L. Z.; Suen, N. T.; Xue, H. G.; Guo, S. P. Crystal chemistry and photocatalytic properties of RE4S4Te3 (RE = Gd, Ho, Er, Tm): experimental and theoretical investigations. Inorg. Chem. 2018, 57, 5343–5351.  doi: 10.1021/acs.inorgchem.8b00344

    29. [29]

      Lai, W. H.; Haynes, A. S.; Frazer, L.; Chang, Y. M.; Liu, T. K.; Lin, J. F.; Liang, I. C.; Sheu, H. S.; Ketterson, J. B.; Kanatzidis, M. G.; Hsu, K. F. Second harmonic generation response optimized at various optical wavelength ranges through a series of cubic chalcogenides Ba6Ag2.67+4δSn4.33−δS16–xSex. Chem. Mater. 2015, 27, 1316–1326.  doi: 10.1021/cm504348z

    30. [30]

      Li, S. F.; Jiang, X. M.; Liu, B. W.; Yan, D.; Lin, C. S.; Zeng, H. Y.; Guo, G. C. Superpolyhedron-built second harmonic generation materials exhibit large mid-infrared conversion efficiencies and high laser-induced damage thresholds. Chem. Mater. 2017, 29, 1796–1804.  doi: 10.1021/acs.chemmater.6b05405

    31. [31]

      Wu, Q.; Liu, X.; Du, Y. S.; Teng, C. L.; Liang, F. Abnormal bandgap enlargement resulted in a promising mid-infrared nonlinear optical material Rb2CdBrI3 with an ultrahigh laser damage threshold. J. Mater. Chem. C 2020, 8, 9005–9011.  doi: 10.1039/D0TC01656J

    32. [32]

      Wu, Q.; Meng, X. G.; Zhong, C.; Chen, X. G.; Qin, J. G. Rb2CdBr2I2: a new IR nonlinear optical material with a large laser damage threshold. J. Am. Chem. Soc. 2014, 136, 5683–5686.  doi: 10.1021/ja412405u

    33. [33]

      Zhang, G.; Li, Y. J.; Jiang, K.; Zeng, H. Y.; Liu, T.; Chen, X. G.; Qin, J. G.; Lin, Z. S.; Fu, P. Z.; Wu, Y. C.; Chen, C. T. A new mixed halide, Cs2HgI2Cl2: molecular engineering for a new nonlinear optical material in the infrared region. J. Am. Chem. Soc. 2012, 134, 14818–14822.  doi: 10.1021/ja3037299

    34. [34]

      Lian, Y. K.; Wu, L. M.; Chen, L. Thioborates: potential nonlinear optical materials with rich structural chemistry. Dalton Trans. 2017, 46, 4134–4147.  doi: 10.1039/C6DT04767J

    35. [35]

      Chi, Y.; Xu, J.; Xue, H. G.; Zhang, Y. P.; Chen, X. L.; Whangbo, M. H.; Guo, S. P.; Deng, S. Q. Triple-Kagomé-layer slabs of mixed-valence rare-earth ions exhibiting quantum spin liquid behaviors: synthesis and characterization of Eu9MgS2B20O41. J. Am. Chem. Soc. 2019, 141, 9533–9536.  doi: 10.1021/jacs.9b04627

    36. [36]

      Guo, S. P.; Chi, Y.; Xue, H. G. Sm3S3BO3: the first sulfide borate without S–O and B–S bonds. Inorg. Chem. 2015, 54, 11052–11054.  doi: 10.1021/acs.inorgchem.5b01930

    37. [37]

      Chi, Y.; Guo, S. P.; Kong, H. J.; Xue, H. G. Crystal and electronic structures, and optical and magnetic properties of novel rare-earth sulfide borates RE3S3BO3 (RE = Sm, Gd). New J. Chem. 2016, 40, 6720–6727.  doi: 10.1039/C6NJ00549G

    38. [38]

      Shi, Z. H.; Chi, Y.; Yang, M.; Liu, W.; Guo, S. P. A series of chalcogenide borates RE6Ta2MgQB8O26 (RE = Sm, Eu, Gd; Q = S, Se) featuring a B4O10 cluster. Inorg. Chem. 2020, 59, 3532–3536.  doi: 10.1021/acs.inorgchem.0c00086

    39. [39]

      Chi, Y.; Xue, H. G.; Guo, S. P. Designing sulfide borate as a novel type of second-order nonlinear-optical material. Inorg. Chem. 2020, 59, 1547–1555.  doi: 10.1021/acs.inorgchem.9b03426

    40. [40]

      Lu, Z. T.; Fan, W. J.; Wang, Z. Q.; Gu, N.; Yue, Z. H.; Xue, H. G.; Guo, S. P. Second-order nonlinear-optical-active selenide borate YSeBO2: featuring a [YSeBO2]n planar belt. Inorg. Chem. 2020, 59, 7905–7909.  doi: 10.1021/acs.inorgchem.0c00753

    41. [41]

      Zhou, W. F.; Li, X. H.; Yao, W. D.; Xue, H. G.; Guo, S. P. Second-order nonlinear optical-active selenide borate Zn8Se2(BO2)12: experimental and theoretical analysis. J. Solid State Chem. 2020, 290, 121572.  doi: 10.1016/j.jssc.2020.121572

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    5. [5]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    6. [6]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    7. [7]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    8. [8]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    9. [9]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    10. [10]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    11. [11]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    12. [12]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    13. [13]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    16. [16]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    17. [17]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(3)
  • Abstract views(332)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return