Citation: Zhuang LI, Ji-Yong YAO, Yi-Cheng WU. Design and Exploratory Synthesis of Infrared Nonlinear Optical Metal Chalcogenides: Recent Advances and Future Perspectives[J]. Chinese Journal of Structural Chemistry, ;2020, 39(9): 1559-1563. doi: 10.14102/j.cnki.0254-5861.2011-2959 shu

Design and Exploratory Synthesis of Infrared Nonlinear Optical Metal Chalcogenides: Recent Advances and Future Perspectives

  • Corresponding author: Ji-Yong YAO, jyao@mail.ipc.ac.cn
  • Received Date: 11 August 2020
    Accepted Date: 27 August 2020

    Fund Project: the National Natural Science Foundation of China 51890862the National Natural Science Foundation of China 61675212

Figures(1)

  • Design and exploratory synthesis of novel infrared nonlinear optical chalcogenides have drawn extensive concerns owing to their excellent overall performance and important role in laser industry. During the past decades, a large number of infrared nonlinear optical chalcogenides have been developed and many effective design strategies have been summarized, which illuminates the path of future explorations. In this perspective, we discuss the feasibility and effectiveness of the representative design ideas. Moreover, we point out some topics to be investigated and discuss the future research directions.
  • 加载中
    1. [1]

      Luo, X.; Li, Z.; Guo, Y.; Yao, J.; Wu, Y. Recent progress on new infrared nonlinear optical materials with application prospect. J. Solid State Chem. 2019, 270, 674–687.  doi: 10.1016/j.jssc.2018.12.036

    2. [2]

      Liang, F.; Kang, L.; Lin, Z.; Wu, Y. Mid-infrared nonlinear optical materials based on metal chalcogenides: structure-property relationship. Cryst. Growth Des. 2017, 17, 2254–2289.  doi: 10.1021/acs.cgd.7b00214

    3. [3]

      Wang, S.; Zhan, M.; Wang, G.; Xuan, H.; Zhang, W.; Liu, C.; Xu, C.; Liu, Y.; Wei, Z.; Chen, X. 4H-SiC: a new nonlinear material for midinfrared lasers. Laser Photonics Rev. 2013, 7, 831–838.  doi: 10.1002/lpor.201300068

    4. [4]

      Wang, G.; Wang, W.; Peng, T.; Guo, L.; Chen, X. Silicon carbide: a wide-bandgap semiconductor and beyond. Science 2018, 360, 51–54.

    5. [5]

      Fan, H. T.; Xu, C. H.; Wang, Z. H.; Wang, G.; Liu, C. J.; Liang, J. K.; Chen, X. L.; Wei, Z. Y. Generation of broadband 17-mJ mid-infrared femtosecond pulses at 375 μm by silicon carbide crystal. Opt. Lett. 2014, 39, 6249.  doi: 10.1364/OL.39.006249

    6. [6]

      Huang, C.; Mao, M.; Wu, H.; Ma, J. Pressure-assisted method for the preparations of high-quality AaGaS2 and AgGaGeS4 crystals for mid-infrared laser applications. Inorg. Chem. 2018, 57, 14866–14871.  doi: 10.1021/acs.inorgchem.8b02626

    7. [7]

      Li, Z.; Zhang, S.; Xing, W.; Guo, Y.; Li, C.; Lin, Z.; Yao, J.; Wu, Y. Mixed-metal thiophosphate CuCd3PS6: an infrared nonlinear optical material activated by its three-in-one tetrahedra-stacking architecture. J. Mater. Chem. C 2020, 8, 5020–5024.  doi: 10.1039/D0TC00832J

    8. [8]

      Lin, H.; Li, B. X.; Chen, H.; Liu, P. F.; Wu, L. M.; Wu, X. T.; Zhu, Q. L. Sr5ZnGa6S15: a new quaternary non-centrosymmetric semiconductor with a 3D framework structure displaying excellent nonlinear optical performance. Inorg. Chem. Front. 2018, 5, 1458–1462.  doi: 10.1039/C8QI00322J

    9. [9]

      Li, M. Y.; Li, B. X.; Lin, H.; Shi, Y. F.; Ma, Z.; Wu, L. M.; Wu, X. T.; Zhu, Q. L. Ternary mixed-metal Cd4GeS6: remarkable nonlinear-optical properties based on a tetrahedral-stacking framework. Inorg. Chem. 2018, 57, 8730–8734.  doi: 10.1021/acs.inorgchem.8b01682

    10. [10]

      Kang, L.; Zhou, M.; Yao, J.; Lin, Z.; Wu, Y.; Chen, C. Metal thiophosphates with good mid-infrared nonlinear optical performances: a first-principles prediction and analysis. J. Am. Chem. Soc. 2015, 137, 13049–13059.  doi: 10.1021/jacs.5b07920

    11. [11]

      Zhou, A.; Lin, C.; Lin, C.; Li, B.; Cheng, W.; Guo, Z.; Guo, Z.; Hou, Z.; Yuan, F.; Chai, G. L. Ba6In6Zn4Se19: a high performance infrared nonlinear optical crystal with [InSe3]3- trigonal planar functional motifs. J. Mater. Chem. C 2020, 8, 7947–7955.  doi: 10.1039/D0TC01282C

    12. [12]

      Chen, M. C.; Wu, L. M.; Lin, H.; Zhou, L. J.; Chen, L. Disconnection enhances the second harmonic generation response: synthesis and characterization of Ba23Ga8Sb2S38. J. Am. Chem. Soc. 2012, 134, 6058–6060.  doi: 10.1021/ja300249n

    13. [13]

      Luo, Z. Z.; Lin, C. S.; Cui, H. H.; Zhang, W. L.; Zhang, H.; Chen, H.; He, Z. Z.; Cheng, W. D. PbGa2MSe6 (M = Si, Ge): two exceptional infrared nonlinear optical crystals. Chem. Mater. 2015, 27, 914–922.  doi: 10.1021/cm504195x

    14. [14]

      Syrigos, J. C.; Clark, D. J.; Saouma, F. O.; Clarke, S. M.; Fang, L.; Jang, J. I.; Kanatzidis, M. G. Semiconducting properties and phase-matching nonlinear optical response of the one-dimensional selenophosphates ANb2PSe10 (A = K, Rb, and Cs). Chem. Mater. 2015, 27, 255–265.  doi: 10.1021/cm5038217

    15. [15]

      Chen, M. C.; Li, L. H.; Chen, Y. B.; Chen, L. In-phase alignments of asymmetric building units in Ln4GaSbS9 (Ln = Pr, Nd, Sm, Gd-Ho) and their strong nonlinear optical responses in middle IR. J. Am. Chem. Soc. 2011, 133, 4617–4624.  doi: 10.1021/ja1111095

    16. [16]

      Guo, Y.; Liang, F.; Yin, W.; Li, Z.; Luo, X.; Lin, Z. S.; Yao, J.; Mar, A.; Wu, Y. BaHgGeSe4 and SrHgGeSe4: two new Hg-based infrared nonlinear optical materials. Chem. Mater. 2019, 31, 3034–3040.  doi: 10.1021/acs.chemmater.9b01023

    17. [17]

      Hu, X. N.; Xiong, L.; Wu, L. M. Six new members of the A2MIIM3IVQ8 family and their structural relationship. Cryst. Growth Des. 2018, 18, 3124–3131.  doi: 10.1021/acs.cgd.8b00247

    18. [18]

      Lin, H.; Wei, W. B.; Chen, H.; Wu, X. T.; Zhu, Q. L. Rational design of infrared nonlinear optical chalcogenides by chemical substitution. Coord. Chem. Rev. 2020, 406, 213150.  doi: 10.1016/j.ccr.2019.213150

    19. [19]

      Chen, C.; Li, R. The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series. Int. Rev. Phys. Chem. 1988, 8, 65–91.

    20. [20]

      Banerjee, S.; Malliakas, C. D.; Jang, J. I.; Ketterson, J. B.; Kanatzidis, M. G. 1/∞[ZrPSe6-]: a soluble photoluminescent inorganic polymer and strong second harmonic generation response of its alkali salts. J. Am. Chem. Soc. 2008, 130, 12270–12272.  doi: 10.1021/ja804166m

    21. [21]

      Zhou, M.; Yang, Y.; Guo, Y.; Lin, Z.; Yao, J.; Wu, Y.; Chen, C. Hg-based infrared nonlinear optical material KHg4Ga5Se12 exhibits good phase-matchability and exceptional second harmonic generation response. Chem. Mater. 2017, 29, 7993–8002.  doi: 10.1021/acs.chemmater.7b03143

    22. [22]

      Liu, B. W.; Zeng, H. Y.; Jiang, X. M.; Wang, G. E.; Li, S. F.; Xu, L.; Guo, G. C. [A3X][Ga3PS8] (A = K, Rb; X = Cl, Br): promising IR non-linear optical materials exhibiting concurrently strong second-harmonic generation and highlaser induced damage thresholds. Chem. Sci. 2016, 7, 6273–6277.  doi: 10.1039/C6SC01907B

    23. [23]

      Zhou, H. M.; Xiong, L.; Chen, L.; Wu, L. M. Dislocations that decrease size mismatch within the lattice leading to ultrawide band gap, large second-order susceptibility, and high nonlinear optical performance of AgGaS2. Angew. Chemie - Int. Ed. 2019, 58, 9979–9983.  doi: 10.1002/anie.201903976

    24. [24]

      Li, Z.; Zhang, S.; Huang, Z.; Zhao, L. D.; Uykur, E.; Xing, W.; Lin, Z.; Yao, J.; Wu, Y. Molecular construction from AgGaS2 to CuZnPS4: defect-induced second harmonic generation enhancement and cosubstitution-driven band gap enlargement. Chem. Mater. 2020, 32, 3288–3296.  doi: 10.1021/acs.chemmater.0c00609

    25. [25]

      Feng, J. H.; Hu, C. L.; Xu, X.; Li, B. X.; Zhang, M. J.; Mao, J. G. AgGa2PS6: a new mid-infrared nonlinear optical material with a high laser damage threshold and a large second harmonic generation response. Chem. - A Eur. J. 2017, 23, 10978–10982.  doi: 10.1002/chem.201702632

  • 加载中
    1. [1]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    2. [2]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    3. [3]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    4. [4]

      Lihua GaoYinglei HanChensheng LinHuikang JiangGuang PengGuangsai YangJindong ChenNing Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529

    5. [5]

      Hongyuan ShaDongling YangYanran ShangZujian WangRongbing SuChao HeXiaoming YangXifa Long . Trithionic guanidine: A novel semi-organic short-wave ultraviolet nonlinear optical sulfate with dimeric heteroleptic tetrahedra. Chinese Chemical Letters, 2025, 36(4): 109730-. doi: 10.1016/j.cclet.2024.109730

    6. [6]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    7. [7]

      Yanye FanJingjing ChenBichun ChenJinyu BaiBowen YangFeng LiangLijing Fang . Design, synthesis and biological evaluation of Leu10-teixobactin analogues. Chinese Chemical Letters, 2025, 36(4): 110075-. doi: 10.1016/j.cclet.2024.110075

    8. [8]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    9. [9]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    10. [10]

      Yueying YangHuiru XieXinbo YuYang LiuHui WangHua LiLixia Chen . Design, synthesis and evaluation of the first DYRK1A degrader for promoting the proliferation of pancreatic β-cells. Chinese Chemical Letters, 2024, 35(11): 109570-. doi: 10.1016/j.cclet.2024.109570

    11. [11]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    12. [12]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    13. [13]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    14. [14]

      Guihuang FangYing LiuYangyang FengYing PanHongwei YangYongchuan LiuMaoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385

    15. [15]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    16. [16]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    17. [17]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    18. [18]

      Shengdong Sun Cheng Wang Shikuo Li . Interfacial channel design on the charge migration for photoelectrochemical applications. Chinese Journal of Structural Chemistry, 2024, 43(12): 100398-100398. doi: 10.1016/j.cjsc.2024.100398

    19. [19]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

    20. [20]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

Metrics
  • PDF Downloads(1)
  • Abstract views(323)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return