Citation: Kojo Aboagye NARTEY, Jin-Song HU, Jia-Xin LI. Two Coordination Polymers with High Selectivity for Sensing Iron(Ⅲ) Constructed from Bifunctional Ligand[J]. Chinese Journal of Structural Chemistry, ;2021, 40(4): 465-472. doi: 10.14102/j.cnki.0254-5861.2011-2957 shu

Two Coordination Polymers with High Selectivity for Sensing Iron(Ⅲ) Constructed from Bifunctional Ligand

  • Corresponding author: Jin-Song HU, jshu@aust.edu.cn
  • Received Date: 11 August 2020
    Accepted Date: 15 October 2020

    Fund Project: the grants from the National Natural Science Foundation of China 21671004

Figures(9)

  • A new ligand [1-{2-(2-pyridyl)-benzo[d]imidazole}-2-(5-hydroxyisophthalic acid) ethane] was used to synthesize cadmium and cobalt based florescent organic frameworks successfully under solvothermal conditions. Single-crystal X-ray crystallography of both complexes as well as their thermal stability and luminescence properties was investigated. Much emphasis was placed on the newly synthesized Cd-complex which shows great sensitivity for the detection of Fe3+ ions and could be used as a potential probe to detect the Fe3+ ions.
  • 加载中
    1. [1]

      Chen, C. H.; Wang, X. H.; Li, L.; Huang, Y. B.; Cao, R. Highly selective sensing of Fe3+ by an anionic metal-organic framework containing uncoordinated nitrogen and carboxylate oxygen sites. Dalton Trans. 2018, 47, 3452–3458.  doi: 10.1039/C8DT00088C

    2. [2]

      Gao, M. L.; Wei, N.; Han, Z. B. Anionic metal-organic framework for high-efficiency pollutant removal and selective sensing of Fe(Ⅲ) ions. RSC Adv. 2016, 6, 60940–60944.  doi: 10.1039/C6RA08500H

    3. [3]

      Karmakar, A.; Joarder, B.; Mallick, A.; Samanta, P.; Desai, A. V.; Basu, S.; Ghosh, S. K. Aqueous phase sensing of cyanide ions using a hydrolytically stable metal-organic framework. Chem. Commun. 2017, 53, 1253–1256.  doi: 10.1039/C6CC08557A

    4. [4]

      Wang, K. M.; Du, L.; Ma, Y. L.; Zhao, Q. H. Selective sensing of 2,4,6-trinitrophenol and detection of the ultralow temperature based on a dual functional MOF as a luminescent sensor. Inorg. Chem. Comm. 2016, 68, 45–49.  doi: 10.1016/j.inoche.2016.04.006

    5. [5]

      Nagarkar, S. S.; Joarder, B.; Chaudhari, A. K.; Mukherjee, S.; Ghosh, S. K. Highly selective detection of nitro explosives by a luminescent metal-organic framework. Angew. Chem. Int. Ed. 2013, 52, 2881–2885.  doi: 10.1002/anie.201208885

    6. [6]

      Chen, S. G.; Shi, Z. Z.; Qin, L.; Jia, H. L.; Zheng, H. G. Two new luminescent Cd(Ⅱ)-metal-organic frameworks as bifunctional chemosensors for detection of cations Fe3+, anions CrO42–, and Cr2O72– in aqueous solution. Cryst. Growth Des. 2017, 17, 67–72.  doi: 10.1021/acs.cgd.6b01197

    7. [7]

      Wang, K. M.; Du, L.; Ma, Y. L.; Zhao, Q. H. Selective sensing of 2,4,6-trinitrophenol and detection of the ultralow temperature based on a dual functional MOF as a luminescent sensor. Inorg. Chem. Comm. 2016, 68, 45–49.  doi: 10.1016/j.inoche.2016.04.006

    8. [8]

      Asgari, M.; Jawahery, S.; Bloch, E. D.; Hudson, M. R.; Flacau, R.; Vlaisavljevich, B.; Long, J. R.; Brown, C. M.; Queen, W. L. An experimental and computational study of CO2 adsorption in the sodalite-type M-BTT (M = Cr, Mn, Fe, Cu) metal-organic frameworks featuring open metal sites. Chem. Sci. 2018, 9, 4579–4588.  doi: 10.1039/C8SC00971F

    9. [9]

      Vervoorts, P.; Schneemann, A.; Hante, I.; Pirillo, J.; Hijikata, Y.; Toyao, T.; Kon, K.; Shimizu, K.; Nakamura, T.; Noro, S.; Fischer, R. A. Coordinated water as new binding sites for the separation of light hydrocarbons in metal-organic frameworks with open metal sites. ACS Appl. Mater. Inter. 2020, 12, 9448–9456.  doi: 10.1021/acsami.9b21261

    10. [10]

      Bachman, J. E.; Kapelewski, M. T.; Reed, D. A.; Gonzalez, M. I.; Long, J. R. M2(m-dobdc) (M = Mn, Fe, Co, Ni) metal-organic frameworks as highly selective, high-capacity adsorbents for olefin/paraffin separations. J. Am. Chem. Soc. 2017, 139, 15363–15370.  doi: 10.1021/jacs.7b06397

    11. [11]

      You, X. Q.; Wang, L. W.; You, Q. L.; Li, T. C.; Zhang, A. Q.; Xie, G. Y. Synthesis, crystal structure and catalytic performance of the trifluoro-substituted mono(beta-diiminato) copper(Ⅱ) complex. Chin. J. Struct. Chem. 2017, 36, 107–112.

    12. [12]

      Yan, B. Photofunctional MOF-based hybrid materials for the chemical sensing of biomarkers. J. Mater. Chem. C 2019, 7, 8155–8175.  doi: 10.1039/C9TC01477B

    13. [13]

      Qu, X.; Yan, B. Zn(Ⅱ)/Cd(Ⅱ)-based metal-organic frameworks: crystal structures, Ln(Ⅲ)-functionalized luminescence and chemical sensing of dichloroaniline as a pesticide biomarker. J. Mater. Chem. C 2020, 8, 9427–9439.  doi: 10.1039/D0TC02200D

    14. [14]

      Diamantis, S. A.; Margariti, A.; Pournara, A. D.; Papaefstathiou, G. S.; Manos, M. J.; Lazarides, T. Luminescent metal-organic frameworks as chemical sensors: common pitfalls and proposed best practices. Inorg. Chem. Front. 2018, 5, 1493–1511.

    15. [15]

      Zhang, W.; Xiong, R. G. Ferroelectric metal-organic frameworks. Chem. Rev. 2012, 112, 1163–1195.  doi: 10.1021/cr200174w

    16. [16]

      Xia, W.; Mahmood, A.; Zou, R.; Xu, Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837–1866.  doi: 10.1039/C5EE00762C

    17. [17]

      Wu, H. B.; Lou, X. W. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Science Advances 2017, 3, eaap9252.  doi: 10.1126/sciadv.aap9252

    18. [18]

      Chowdhuri, R. A.; Bhattacharya, D.; Sahu, S. K. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans. 2016, 45, 2963–2973.  doi: 10.1039/C5DT03736K

    19. [19]

      Lan, A. J.; Li, K. H.; Wu, H. H.; Olson, D. H.; Emge, T. J.; Ki, W.; Hong, M. C.; Li, J. A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives. Angew. Chem., Int. Ed. 2009, 48, 2334–2338.  doi: 10.1002/anie.200804853

    20. [20]

      Ma, D.; Li, B.; Zhou X.; Zhou, Q.; Liu, K.; Zeng, G.; Li, G.; Shi, Z.; Feng, S. A dual functional MOF as a luminescent sensor for quantitatively detecting the concentration of nitrobenzene and temperature. Chem. Commun. 2013, 49, 8964–8966.  doi: 10.1039/c3cc44546a

    21. [21]

      Sheldrick, G. M. SHELX-97, Program for Crystal Structure Refinement. University of Göttingen: Germany 1997; Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Solution. University of Göttingen: Germany 1997.

    22. [22]

      Li, X. M.; Pan, Y. R.; Liu, B.; Zhou, S. Synthesis, structural characterization and fluorescent properties of a cadmium coordination polymer with 4-nitrophthalate and 1,4-bis(imidazol-1-yl)-benzene. Chin. J. Struct. Chem. 2020, 39, 955–959.

  • 加载中
    1. [1]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    2. [2]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    3. [3]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    4. [4]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    5. [5]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    6. [6]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    7. [7]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    8. [8]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    9. [9]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    10. [10]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    11. [11]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    12. [12]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    15. [15]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    16. [16]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    17. [17]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    18. [18]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    19. [19]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    20. [20]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

Metrics
  • PDF Downloads(1)
  • Abstract views(302)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return