Citation: Bin-Bin YUAN, Jin-Shuai SONG, Xue-Yuan YAN, Han XIAO, Chun-Sen LI. Theoretical Study of Electronic Structure, Formation Mechanism and Intramolecular Sulfoxide Imidation Reactivity of Iron Phthalocyanine Nitrene Complex[J]. Chinese Journal of Structural Chemistry, ;2021, 40(4): 415-423. doi: 10.14102/j.cnki.0254-5861.2011-2956 shu

Theoretical Study of Electronic Structure, Formation Mechanism and Intramolecular Sulfoxide Imidation Reactivity of Iron Phthalocyanine Nitrene Complex

  • Corresponding author: Jin-Shuai SONG, jssong@zzu.edu.cn Chun-Sen LI, chunsen.li@fjirsm.ac.cn
  • Received Date: 20 July 2020
    Accepted Date: 12 October 2020

    Fund Project: the NSFC 21933009the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000

Figures(8)

  • Density functional theory (DFT) calculations are performed to investigate recent experimentally studied ring-closing sulfoxide imidation catalyzed by Fe(Ⅱ)-phthalocyanine (FePc). Our results reveal that the ground state of iron phthalocyanine nitrene intermediate (PcFeNR, R = (CH2)3(SO)Ph), which is believed to mediate the intramolecular imitation, is triplet state featuring a diradical structure. The formation of PcFeNR is the result of a denitrification process with a calculated high-barrier of 23.4 kcal/mol which is in good agreement with the experimentally observed high reaction temperature of 100 ℃. The generated PcFeNR undergoes a low-barrier intramolecular nucleophilic attack by proximal nitrogen atom on the sulfur accomplishing the cyclization of sulfoxide. This study provides theoretical insights into the mechanism-based design of useful catalysts for nitrene transfer reactions.
  • 加载中
    1. [1]

      Roughley, S. D.; Jordan, A. M. The medicinal chemist's toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 2011, 54, 3451−3479.  doi: 10.1021/jm200187y

    2. [2]

      Mehn, M. P.; Peters, J. C. Mid-to high-valent imido and nitrido complexes of iron. J. Inorg. Biochem. 2006, 100, 634−643.

    3. [3]

      Holland, P. L. Electronic structure and reactivity of three-coordinate iron complexes. Acc. Chem Res. 2008, 41, 905−914.  doi: 10.1021/ar700267b

    4. [4]

      Mancheño, O. G.; Dallimore, J.; Plant, A.; Bolm, C. Iron(Ⅱ) triflate as an efficient catalyst for the imination of sulfoxides. Org. Lett. 2009, 11, 2429−2432.  doi: 10.1021/ol900660x

    5. [5]

      Mancheño, O. G.; Dallimore, J.; Plant, A.; Bolm, C. Synthesis of sulfoximines and sulfilimines with aryl and pyrazolylmethyl substituents. Adv. Synth. Catal. 2010, 352, 309−316.  doi: 10.1002/adsc.200900729

    6. [6]

      Wang, J.; Frings, M.; Bolm, C. Enantioselective nitrene transfer to sulfides catalyzed by a chiral iron complex. Angew. Chem. Int. Ed. 2013, 52, 8661−8665.  doi: 10.1002/anie.201304451

    7. [7]

      Kumar, S.; Faponle, A. S.; Barman, P.; Vardhaman, A. K.; Sastri, C. V.; Kumar, D.; Visser, S. P. D. Long-range electron transfer triggers mechanistic differences between iron(Ⅳ)-oxo and iron(Ⅳ)-imido oxidants. J. Am. Chem. Soc. 2014, 136, 17102−17115.  doi: 10.1021/ja508403w

    8. [8]

      Mancheño, O. G.; Bolm, C. Iron-catalyzed imination of sulfoxides and sulfides. Org. Lett. 2006, 8, 2349−2352.  doi: 10.1021/ol060640s

    9. [9]

      Barman, D. N.; Liu, P.; Houk, K. N.; Nicholas, K. M. On the mechanism of ligand-assisted, copper, catalyzed benzylic amination by chloramine-T. Organometallics 2010, 29, 3404−3412.  doi: 10.1021/om100427s

    10. [10]

      Vyas, R.; Gao, G. Y.; Harden, J. D.; Zhang, X. P. Iron(Ⅲ) porphyrin catalyzed aziridination of alkenes with bromamine-T as nitrene source. Org. Lett. 2004, 6, 1907−1910.  doi: 10.1021/ol049691k

    11. [11]

      Lebel, H.; Huard, K.; Lectard, S. N-tosyloxycarbamates as a source of metal nitrenes: rhodium-catalyzed C-H insertion and aziridination reactions. J. Am. Chem. Soc. 2005, 127, 14198−14199.  doi: 10.1021/ja0552850

    12. [12]

      Suarez, A. I. O.; Jiang, H. L.; Zhang, X. P.; De Bruin, B. The radical mechanism of cobalt(Ⅱ) porphyrin-catalyzed olefin aziridination and the importance of cooperative H-bonding. Dalton Trans. 2011, 40, 5697−5705.

    13. [13]

      Intrieri, D.; Zardi, P.; Caselli, A.; Gallo, E. Organic azides: "energetic reagents'' for the intermolecular amination of C–H bonds. Chem. Commun. 2014, 50, 11440−11453.  doi: 10.1039/C4CC03016H

    14. [14]

      Geer, A. M.; Tejel, C.; Lopez, J. A.; Ciriano, M. A. Terminal imido rhodium complexes. Angew. Chem. Int. Ed. 2014, 53, 5614−5618.  doi: 10.1002/anie.201400023

    15. [15]

      Scheibel, M. G.; Wu, Y. L.; Stuckl, A. C.; Krause, L.; Carl, E.; Stalke, D.; De Bruin, B.; Schneider, S. Synthesis and reactivity of a transient, terminal nitrido complex of rhodium. J. Am. Chem. Soc. 2013, 135, 17719−17722.  doi: 10.1021/ja409764j

    16. [16]

      Manca, G.; Gallo, E.; Intrieri, D.; Mealli, C. DFT mechanistic proposal of the ruthenium porphyrin-catalyzed allylic amination by organic azides. ACS Catal. 2014, 4, 823−832.  doi: 10.1021/cs4010375

    17. [17]

      Zhang, J.; Shan, C. H.; Zhang, T.; Song, J. S.; Liu, T.; Lan, Y. Computational advances aiding mechanistic understanding of silver-catalyzed carbene/nitrene/silylene transfer reactions. Coord. Chem. Rev. 2019, 382, 69−84.  doi: 10.1016/j.ccr.2018.12.009

    18. [18]

      Díaz-Requejo, M. M.; Pérez, P. J. The TpxM core in Csp3–H bond functionalization reactions: comparing carbene, nitrene, and oxo insertion processes (Tpx = scorpionate ligand; M = Cu, Ag). Eur. J. Inorg. Chem. 2020, 879−885.

    19. [19]

      Wang, J. P.; Zheng, K. C.; Li, T.; Zhan, X. J. Mechanism and chemoselectivity of mn-catalyzed intramolecular nitrene transfer reaction: C–H amination vs. C=C aziridination. Catalysts 2020, 10, 292−303.  doi: 10.3390/catal10030292

    20. [20]

      Ning, T. R.; Song, J. S.; Wei, J.; Zhang, M. Y.; Lu, Q. Q.; Huang, J.; Li C. S. Control of the electronic structure of manganese nitrido complexes by pararing substituents: a theoretical study. Chin. J. Struct. Chem. 2018, 37, 1541−1549.

    21. [21]

      Che, C. M.; Lo, V. K. Y.; Zhou, C. Y.; Huang, J. S. Selective functionalisation of saturated C–H bonds with metalloporphyrin catalysts. Chem. Soc. Rev. 2011, 40, 1950−1975.  doi: 10.1039/c0cs00142b

    22. [22]

      Zheng, J.; Liu, Z. Y.; Jin, X. J.; Dang, Y. F. Unveiling the mechanism and regioselectivity of iron-dipyrrinato-catalyzed intramolecular C(sp3)–H amination of alkyl azides. Catal. Sci. Technol. 2019, 9, 1279−1288.  doi: 10.1039/C8CY02479K

    23. [23]

      Hopmann, K. H.; Ghosh, A. Mechanism of cobalt-porphyrin-catalyzed aziridination. ACS Catal. 2011, 1, 597−600.  doi: 10.1021/cs1001114

    24. [24]

      Lyaskovskyy, V.; Suarez, A. I. O.; Lu, H. J.; Jiang, H. L.; Zhang, X. P.; De Bruin, B. Mechanism of cobalt(Ⅱ) porphyrin-catalyzed C–H amination with organic azides: radical nature and H-atom abstraction ability of the key cobalt(Ⅲ)-nitrene intermediates. J. Am. Chem. Soc. 2011, 133, 12264−12273.  doi: 10.1021/ja204800a

    25. [25]

      Camasso, N. M.; Canty, A. J.; Ariafard, A.; Sanford, M. S. Experimental and computational studies of high-valent nickel and palladium complexes. Organometallics 2017, 36, 4382−4393.  doi: 10.1021/acs.organomet.7b00613

    26. [26]

      Baek, Y.; Betley, T. A. Catalytic C−H amination mediated by dipyrrin cobalt imidos. J. Am. Chem. Soc. 2019, 141, 7797−7806.  doi: 10.1021/jacs.9b01262

    27. [27]

      Wang, L.; Hu, L. R.; Zhang, H. Z.; Chen, H.; Deng, L. Three-coordinate iron(Ⅳ) bisimido complexes with aminocarbene ligation: synthesis, structure, and reactivity. J. Am. Chem. Soc. 2015, 137, 14196−14207.  doi: 10.1021/jacs.5b09579

    28. [28]

      Reckziegel, A.; Pietzonka, C.; Kraus, F.; Werncke, C. G. C−H bond activation by an imido cobalt(Ⅲ) and the resulting amido cobalt(Ⅱ) complex. Angew. Chem. Int. Ed. 2020, 59, 8527−8531.  doi: 10.1002/anie.201914718

    29. [29]

      Searles, K.; Fortier, S.; Khusniyarov, M. M.; Carroll, P. J.; Sutter, J.; Meyer, K. A cis-divacant octahedral and mononuclear iron(Ⅳ) imide. Angew. Chem. Int. Ed. 2014, 53, 14139−14143.  doi: 10.1002/anie.201407156

    30. [30]

      Liu, Y.; Du, J. Z.; Deng, L. Synthesis, structure, and reactivity of low-spin cobalt(Ⅱ) imido complexes [(Me3P)3Co(NAr)]. Inorg. Chem. 2017, 56, 8278−8286.  doi: 10.1021/acs.inorgchem.7b00941

    31. [31]

      Fantauzzi, S.; Caselli, A.; Gallo, E. Nitrene transfer reactions mediated by metallo-porphyrin complexes. Dalton Trans. 2009, 5434−5443.

    32. [32]

      Vardhaman, A. K.; Lee, Y. M.; Jung, J.; Ohkubo, K.; Nam, W.; Fukuzumi, S. Enhanced electron transfer reactivity of a nonheme iron(Ⅳ)-imido complex as compared to the iron(Ⅳ)-oxo analogue. Angew. Chem. Int. Ed. 2016, 55, 3709−3713.  doi: 10.1002/anie.201600287

    33. [33]

      Vardhaman, A. K.; Barman, P.; Kumar, S.; Sastri, C. V.; Kumar, D.; De Visser, S. P. Comparison of the reactivity of nonheme iron(Ⅳ)-oxo versus iron(Ⅳ)-imido complexes: which is the better oxidant? Angew. Chem. Int. Ed. 2013, 52, 12288−12292.  doi: 10.1002/anie.201305370

    34. [34]

      Sabenya, G.; Gamba, I.; Gomez, L.; Clemancey, M.; Frisch, J. R.; Klinker, E. J. Octahedral iron(iv)-tosylimido complexes exhibiting single electron-oxidation reactivity. Chem. Sci. 2019, 10, 9513−9529.  doi: 10.1039/C9SC02526J

    35. [35]

      Li, X. Y.; Dong, L. H.; Liu, Y. Theoretical study of iron porphyrin nitrene: formation mechanism, electronic nature, and intermolecular C–H amination. Inorg. Chem. 2020, 59, 1622−1632.  doi: 10.1021/acs.inorgchem.9b02216

    36. [36]

      Conradie, J.; Ghosh, A. Electronic structure of an iron-porphyrin-nitrene complex. Inorg. Chem. 2010, 49, 243−248.  doi: 10.1021/ic901897w

    37. [37]

      Yu, H.; Li, Z.; Bolm, C. Three-dimensional heterocycles by iron-catalyzed ring-closing sulfoxide imidation. Angew. Chem. Int. Ed. 2018, 57, 12053−12056.  doi: 10.1002/anie.201804284

    38. [38]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D. 01; Gaussian, Inc. : Wallingford CT 2013.

    39. [39]

      Becke, A. D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648−5652.  doi: 10.1063/1.464913

    40. [40]

      Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200−206.  doi: 10.1016/0009-2614(89)87234-3

    41. [41]

      Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297−3305.  doi: 10.1039/b508541a

    42. [42]

      Zheng, J.; Xu, X.; Truhlar, D. G. Minimally augmented Karlsruhe basis sets. Theor. Chem. Acc. 2011, 128, 295−305.  doi: 10.1007/s00214-010-0846-z

    43. [43]

      Fukui, K. A formulation of the reaction coordinate. J. Phys. Chem. 1970, 74, 4161−4163.  doi: 10.1021/j100717a029

    44. [44]

      Fukui, K. The path of chemical reactions - the IRC approach. Acc. Chem. Res. 1981, 14, 363−368.  doi: 10.1021/ar00072a001

    45. [45]

      Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787−1799.  doi: 10.1002/jcc.20495

    46. [46]

      Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104−19.  doi: 10.1063/1.3382344

    47. [47]

      Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456−1465.  doi: 10.1002/jcc.21759

    48. [48]

      Miertu, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117−129.  doi: 10.1016/0301-0104(81)85090-2

    49. [49]

      Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108−18.  doi: 10.1063/5.0004608

    50. [50]

      Conradie, J.; Ghosh, A. Electronic structure of an iron-porphyrin-nitrene complex. Inorg. Chem. 2010, 49, 243−248.  doi: 10.1021/ic901897w

    51. [51]

      Wang, J.; Gao, H.; Yang, L.; Gao, Y. Q. Role of engineered iron-haem enzyme in reactivity and stereoselectivity of intermolecular benzylic C–H bond amination. ACS Catal. 2020, 10, 5318−5327.  doi: 10.1021/acscatal.0c00248

    52. [52]

      Spasyuk, D. M.; Carpenter, S. H.; Kefalidis, C. E.; Piers, W. E.; Neidig, M. L.; Maron, L. Facile hydrogen atom transfer to iron(Ⅲ) imido radical complexes supported by a dianionic pentadentate ligand. Chem. Sci. 2016, 7, 5939−5944.  doi: 10.1039/C6SC01433J

    53. [53]

      Sharon, D. A.; Mallick, D.; Wang, B.; Shaik, S. Computation sheds insight into iron porphyrin carbenes' electronic structure, formation, and N–H insertion reactivity. J. Am. Chem. Soc. 2016, 138, 9597−9610.  doi: 10.1021/jacs.6b04636

    54. [54]

      Khade, R. L.; Zhang, Y. Catalytic and biocatalytic iron porphyrin carbene formation: effects of binding mode, carbene substituent, porphyrin substituent, and protein axial ligand. J. Am. Chem. Soc. 2015, 137, 7560−7563.  doi: 10.1021/jacs.5b03437

    55. [55]

      Hopmann, K. H.; Ghosh, A. Mechanism of cobalt-porphyrin-catalyzed aziridination. ACS Catal. 2011, 1, 597−600.  doi: 10.1021/cs1001114

    56. [56]

      Lyaskovskyy, V.; Suarez, A. I. O.; Lu, H.; Jiang, H.; Zhang, X. P.; De Bruin, B. Mechanism of cobalt(ll) porphyrin-catalyzed C–H amination with organic azides: radical nature and H-atom abstraction ability of the key cobalt(lll)-nitrene intermediates. J. Am. Chem. Soc. 2011, 133, 12264−12273.  doi: 10.1021/ja204800a

    57. [57]

      Ansari, A. J.; Pathare, R. S.; Maurya, A. K.; Agnihotri, V. K.; Khan, S.; Roy, T. K. Synthesis of diverse nitrogen heterocycles via palladium-catalyzed tandem azide-isocyanide cross-coupling/cyclization: mechanistic insight using experimental and theoretical studies. Adv. Synth. Catal. 2018, 360, 290−297.  doi: 10.1002/adsc.201700928

    58. [58]

      Xiao, X. S.; Hou, C.; Zhang, Z. H.; Ke, Z. F.; Lan, J. Y.; Jiang, H. F. Iridium(Ⅲ)-catalyzed regioselective intermolecular unactivated secondary Csp3–H bond amidation. Angew. Chem. Int. Ed. 2016, 55, 11897−11901.  doi: 10.1002/anie.201606531

  • 加载中
    1. [1]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    4. [4]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    5. [5]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    6. [6]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    7. [7]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    8. [8]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    9. [9]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    12. [12]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    13. [13]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    14. [14]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    15. [15]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    16. [16]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    17. [17]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    18. [18]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    19. [19]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    20. [20]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

Metrics
  • PDF Downloads(4)
  • Abstract views(329)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return