Citation: Bu-Tong LI, Lu-Lin LI, Ju PENG. Theoretical Exploration about the Detonation Performance and Thermal Stability of the Nitro-substituted Derivatives of Guanine[J]. Chinese Journal of Structural Chemistry, ;2021, 40(4): 409-414. doi: 10.14102/j.cnki.0254-5861.2011-2954 shu

Theoretical Exploration about the Detonation Performance and Thermal Stability of the Nitro-substituted Derivatives of Guanine

  • Corresponding author: Bu-Tong LI, libutong@hotmail.com Lu-Lin LI, lulin.li@outlook.com
  • Received Date: 5 August 2020
    Accepted Date: 28 September 2020

    Fund Project: the Natural Science Foundation of Guizhou Province QKHPTRC[2018]5778-09the Natural Science Foundation of Guizhou Province QKHJC[2020] 1Y038the Natural Science Foundation of Guizhou Education University 14BS017the Natural Science Foundation of Guizhou Education University 2019ZD001

Figures(1)

  • The nitro-substituted derivatives of guanine are designed and calculated to explore novel high energy density materials. To explore the thermal stability of title molecules, the heat of formation (HOF), bond dissociation energy (BDE), and bond order of the trigger bond are calculated. To predict the possibility used as high energy density compounds, the detonation pressure (P), detonation velocity (D), explosive heat (Q), and crystal density (ρ) are calculated by using the classical Kamlet-Jacobs (K-J) equation. Based on our calculations, E (D = 8.93 km/s, P = 37.21 GPa) is confirmed as the potential high energy density compound.
  • 加载中
    1. [1]

      Jensen, T. L.; Moxnes, J. F.; Kjønstad, E. F.; Unneberg, E. A study of the detonation properties, propellant impulses, impact sensitivities and synthesis of nitrated anta and nto derivatives. Cent. Eur. J. Energetic Mater. 2016, 13, 445−467.  doi: 10.22211/cejem/64995

    2. [2]

      Carvalho, T. M. T.; Amaral, L. M. P. F.; Morais, V. M. F.; Ribeiro da Silva, M. D. M. C. Calorimetric and computational studies for three nitroimidazole isomers. J. Chem. Thermodyn. 2017, 105, 267−275.  doi: 10.1016/j.jct.2016.10.026

    3. [3]

      Ravi, P. Experimental study and ab-initio calculations on the molecular structure, infrared and raman spectral properties of dinitroimidazoles. Chem. Data Collect. 2017, 9−10, 11−23.

    4. [4]

      Eberly, J. O.; Mayo, M. L.; Carr, M. R.; Crocker, F. H.; Indest, K. J. Detection of hexahydro-1,3-5-trinitro-1,3,5-triazine (RDX) with a microbial sensor. J. Gen. Appl. Microbiol. 2019, 64, 139−144.

    5. [5]

      Ariyarathna, T.; Ballentine, M.; Vlahos, P.; Smith, R. W.; Cooper, C.; Bohlke, J. K.; Fallis, S.; Groshens, T. J.; Tobias, C. Tracing the cycling and fate of the munition, hexahydro-1,3,5-trinitro-1,3,5-triazine in a simulated sandy coastal marine habitat with a stable isotopic tracer, (15)N-[RDX]. Sci. Total Environ. 2019, 647, 369−378.  doi: 10.1016/j.scitotenv.2018.07.404

    6. [6]

      Wu, J.; Huang, Y.; Yang, L.; Geng, D.; Wang, F.; Wang, H.; Chen, L. Reactive molecular dynamics simulations of the thermal decomposition mechanism of 1,3,3-trinitroazetidine (TNAZ). ChemPhysChem. 2018, 2683−2695.

    7. [7]

      Li, Y.; Feng, X.; Liu, H.; Hao, J.; Redfern, S. A. T.; Lei, W.; Liu, D.; Ma, Y. Route to high-energy density polymeric nitrogen t-N via He-N compounds. Nat. Commun. 2018, 9, 722−728.  doi: 10.1038/s41467-018-03200-4

    8. [8]

      Vetter, I. R.; Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 2001, 294, 1299−1304.  doi: 10.1126/science.1062023

    9. [9]

      Li, B.; Li, L. Theoretical study on nitroimine derivatives of azetidine as high-energy-density compounds. Cent. Eur. J. Energetic Mater. 2020, 17, 107−118.  doi: 10.22211/cejem/119139

    10. [10]

      Li, B.; Li, L.; Luo, T. Theoretical exploration about the thermal stability and detonation properties of nitro-substituted hypoxanthine. J. Mol. Model. 2020, 26, 114, 23−28.

    11. [11]

      Ravi, P.; Tewari, S. P. A dft study on the structure-property relationship of amino-, nitro-and nitrosotetrazoles, and their n-oxides: new high energy density molecules. Struct. Chem. 2012, 23, 487−498.  doi: 10.1007/s11224-011-9898-5

    12. [12]

      Zheng, Y. Dbl family guanine nucleotide exchange factors. Trends Biochem. Sci. 2001, 26, 724−732.  doi: 10.1016/S0968-0004(01)01973-9

    13. [13]

      Henderson, E.; Hardin, C. C.; Walk, S. K.; Tinoco Jr, I.; Blackburn, E. H. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine· guanine base pairs. Cell 1987, 51, 899−908.  doi: 10.1016/0092-8674(87)90577-0

    14. [14]

      Yu, H. Dft study on reaction mechanism of proton transfer of guanine. J. Wuhan Univ. (Nat. Sci. Ed.) 2012, 58, 35−39.

    15. [15]

      Lee, C.; Yang, W.; Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785−789.  doi: 10.1103/PhysRevB.37.785

    16. [16]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B. 01, Gaussian, Inc., Pittsburgh PA 2003.

    17. [17]

      Ghule, V. D.; Jadhav, P. M.; Patil, R. S.; Radhakrishnan, S.; Soman, T. Quantum-chemical studies on hexaazaisowurtzitanes. J. Phys. Chem. A 2009, 114, 498−503.

    18. [18]

      Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople, J. A. Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation. J. Am. Chem. Soc. 1970, 92, 4796−4801.  doi: 10.1021/ja00719a006

    19. [19]

      Fan, X. W.; Ju, X. H. Theoretical studies on four-membered ring compounds with NF2, ONO2, N3, and NO2 groups. J. Comput. Chem. 2008, 29, 505−513.  doi: 10.1002/jcc.20809

    20. [20]

      Rice, B. M.; Pai, S. V.; Hare, J. Predicting heats of formation of energetic materials using quantum mechanical calculations. Combust. Flame 1999, 118, 445−458.  doi: 10.1016/S0010-2180(99)00008-5

    21. [21]

      Linstrom, P. J.; Mallard, W. G. The nist chemistry webbook: a chemical data resource on the internet. J. Chem. Eng. Data 2001, 46, 1059−1063.  doi: 10.1021/je000236i

    22. [22]

      Kamlet, M. J.; Jacobs, S. J. Chemistry of detonations. I. A simple method for calculating detonation properties of C−H−N−O explosives. J. Chem. Phys. 1968, 48, 23−35.  doi: 10.1063/1.1667908

    23. [23]

      Paquet, L.; Monteil-Rivera, F.; Hatzinger, P. B.; Fuller, M. E.; Hawari, J. Analysis of the key intermediates of rdx (hexahydro-1,3,5-trinitro-1,3,5-triazine) in groundwater: occurrence, stability and preservation. J. Environ. Monit. 2011, 13, 2304−2311.  doi: 10.1039/c1em10329f

    24. [24]

      Emel'yanenko, V. N.; Zaitsau, D. H.; Verevkin, S. P. Thermochemical properties of xanthine and hypoxanthine revisited. J. Chem. Eng. Data 2017, 62, 2606−2609.  doi: 10.1021/acs.jced.7b00085

    25. [25]

      Li, B.; Li, L.; Ye, M. Thermal stability and detonation character of nitro-substituted derivatives of cytosine. Chem. Phys. 2020, 536, 110846−5.  doi: 10.1016/j.chemphys.2020.110846

    26. [26]

      Drake, R. High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics (Shock Wave and High Pressure Phenomena). Springer, Berlin 2006, p214−215

  • 加载中
    1. [1]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    2. [2]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    5. [5]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    6. [6]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    7. [7]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    8. [8]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    9. [9]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    10. [10]

      Fenglin JiangAnan LiuQian WeiYoucai Hu . Editing function of type Ⅱ thioesterases in the biosynthesis of fungal polyketides. Chinese Chemical Letters, 2024, 35(10): 109504-. doi: 10.1016/j.cclet.2024.109504

    11. [11]

      Genxiang WangLinfeng FanPeng WangJunfeng WangFen QiaoZhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498

    12. [12]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    13. [13]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    14. [14]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    15. [15]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    16. [16]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    17. [17]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    18. [18]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    19. [19]

      Fei-Yan GaoYan WuLing YangZhong-Yi MaYi ChenXiao-Man MaoXu-Fei BianPei TangChong Li . Orally delivered berberine derivatives for dual therapy in diabetic complications with MRSA infections. Chinese Chemical Letters, 2025, 36(4): 109917-. doi: 10.1016/j.cclet.2024.109917

    20. [20]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

Metrics
  • PDF Downloads(2)
  • Abstract views(305)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return