Recent Progresses in the Investigation of Rare-earth Boron Inverse Sandwich Clusters
- Corresponding author: Lai-Sheng WANG, lai-sheng_wang@brown.edu Jun LI, junli@tsinghua.edu.cn
Citation:
Wan-Lu LI, Teng-Teng CHEN, Zhi-Yu JIAING, Lai-Sheng WANG, Jun LI. Recent Progresses in the Investigation of Rare-earth Boron Inverse Sandwich Clusters[J]. Chinese Journal of Structural Chemistry,
;2020, 39(6): 1009-1018.
doi:
10.14102/j.cnki.0254-5861.2011-2891
Tang, A. C.; Li, Q. S.; Liu, C. W.; Li, J. Symmetrical clusters of carbon and boron. Chem. Phy. Lett. 1993, 5-6, 465-469.
Zhai, H. J.; Kiran, B.; Li, J.; Wang, L. S. Hydrocarbon analogues of boron clusters-planarity, aromaticity and antiaromaticity. Nat. Mater. 2003, 2, 827–833.
doi: 10.1038/nmat1012
Alexandrova, A. N.; Boldyrev, A. I.; Zhai, H. J.; Wang, L. S.; Steiner, E.; Fowler, P. W. Structure and bonding in B6- and B6: planarity and antiaromaticity. J. Phys. Chem. A 2003, 9, 1359–1369.
Li, W.; Hu, H.; Zhao, Y.; Chen, X.; Chen, T.; Jian, T.; Wang, L.; Li, J. Recent progress on the investigations of boron clusters and boronbased materials(I): borophene. Sci. Sinica Chim. 2018, 2, 98–107.
Li, W. L.; Chen, X.; Jian, T.; Chen, T. T.; Li, J.; Wang, L. S. From planar boron clusters to borophenes and metalloborophenes. Nat. Rev. Chem. 2017, 1, 71.
doi: 10.1038/s41570-017-0071
Sergeeva, A. P.; Popov, I. A.; Piazza, Z. A.; Li, W. L.; Romanescu, C.; Wang, L. S.; Boldyrev, A. I. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc. Chem. Res. 2014, 4, 1349–1358.
Boldyrev, A. I.; Wang, L. S. Beyond organic chemistry: aromaticity in atomic clusters. Phys. Chem. Chem. Phys. 2016, 17, 11589-11605.
Wang, L. S. Photoelectron spectroscopy of size-selected boron clusters: from planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 2016, 1, 69–142.
Bai, H.; Chen, T. T.; Chen, Q.; Zhao, X. Y.; Zhang, Y. Y.; Chen, W. J.; Li, W. L.; Cheung, L. F.; Bai, B.; Cavanagh, J.; Huang, W.; Li, S. D.; Li, J.; Wang, L. S. Planar B41− and B42− clusters with double-hexagonal vacancies. Nanoscale 2019, 48, 23286–23295.
Chen, Q.; Chen, T. T.; Li, H. R.; Zhao, X. Y.; Chen, W. J.; Zhai, H. J.; Li, S. D.; Wang, L. S. B31− and B32−: chiral quasi-planar boron clusters. Nanoscale 2019, 19, 9698–9704.
Li, W. L.; Chen, Q.; Tian, W. J.; Bai, H.; Zhao, Y. F.; Hu, H. S.; Li, J.; Zhai, H. J.; Li, S. D.; Wang, L. S. The B35 cluster with a double-hexagonal vacancy: a new and more flexible structural motif for borophene. J. Am. Chem. Soc. 2014, 35, 12257–12260.
Piazza, Z. A.; Hu, H. S.; Li, W. L.; Zhao, Y. F.; Li, J.; Wang, L. S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113.
doi: 10.1038/ncomms4113
Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 6267, 1513–1516.
Feng, B.; Zhang, J.; Zhong, Q.; Li, W.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 6, 564–569.
Zhai, H. J.; Zhao, Y. F.; Li, W. L.; Chen, Q.; Bai, H.; Hu, H. S.; Piazza, Z. A.; Tian, W. J.; Lu, H. G.; Wu, Y. B.; Mu, Y. W.; Wei, G. F.; Liu, Z. P.; Li, J.; Li, S. D.; Wang, L. S. Observation of an all-boron fullerene. Nat. Chem. 2014, 8, 727–731.
Chen, Q.; Li, W. L.; Zhao, Y. F.; Zhang, S. Y.; Hu, H. S.; Bai, H.; Li, H. R.; Tian, W. J.; Lu, H. G.; Zhai, H. J.; Li, S. D.; Li, J.; Wang, L. S. Experimental and theoretical evidence of an axially chiral borospherene. ACS Nano. 2015, 1, 754–760.
Jian, T.; Chen, X.; Li, S. D.; Boldyrev, A. I.; Li, J.; Wang, L. S. Probing the structures and bonding of size-selected boron and doped-boron clusters. Chem. Soc. Rev. 2019, 13, 3550–3591.
Zhai, H. J.; Wang, L. S.; Alexandrova, A. N.; Boldyrev, A. I. Electronic structure and chemical bonding of B5− and B5 by photoelectron spectroscopy and ab initio calculations. J. Chem. Phys. 2002, 17, 7917–7924.
Alexandrova, A. N.; Boldyrev, A. I.; Zhai, H. J.; Wang, L. S.; Steiner, E.; Fowler, P. W. Structure and bonding in B6− and B6: planarity and antiaromaticity. J. Phys. Chem. A 2003, 9, 1359–1369.
Zhai, H. J.; Alexandrova, A. N.; Birch, K. A.; Boldyrev, A. I.; Wang, L. S. Hepta‐and octacoordinate boron in molecular wheels of eight‐and nine‐atom boron clusters: observation and confirmation. Angew. Chem. Int. Ed. 2003, 48, 6004–6008.
Li, W. L.; Zhao, Y. F.; Hu, H. S.; Li, J.; Wang, L. S. [B30]: a quasiplanar chiral boron cluster". Angew. Chem. Int. Ed. 2014, 53, 5540–5545.
doi: 10.1002/anie.201402488
Zhai, H. J.; Wang, L. S.; Alexandrova, A. N.; Boldyrev, A. I.; Zakrzewski, V. G. Photoelectron spectroscopy and ab initio study of B3- and B4- anions and their neutrals. J. Phys. Chem. A 2003, 44, 9319–9328.
Alexandrova, A. N.; Boldyrev, A. I.; Zhai, H. J.; Wang, L. S. Electronic structure, isomerism, and chemical bonding in B7− and B7. J. Phys. Chem. A 2004, 16, 3509–3517.
Dennington, R.; Keith, T.; Millam, J. GaussView, version 4.1; Semichem, Inc., Shawnee Mission, KS 2007.
Chung, H. Y.; Weinberger, M. B.; Levine, J. B.; Kavner, A.; Yang, J. M.; Tolbert, S. H.; Kaner, R. B. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science 2007, 5823, 436–439.
Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem. Rev. 2013, 10, 7981–8065.
Sussardi, A.; Tanaka, T.; Khan, A. U.; Schlapbach, L.; Mori, T. Enhanced thermoelectric properties of samarium boride. J. Materiomics 2015, 3, 196–204.
Scheifers, J. P.; Zhang, Y.; Fokwa, B. P. T. Boron: enabling exciting metal-rich structures and magnetic properties. Acc. Chem. Res. 2017, 9, 2317–2325.
Akopov, G.; Yeung, M. T.; Kaner, R. B. Rediscovering the crystal chemistry of borides. Adv. Mater. 2017, 21, 1604506.
Paderno, Y. B.; Pokrzywnicki, S.; Staliński, B. Magnetic properties of some rare earth hexaborides. Phys. Status Solidi b-Basic Res. 1967, 1, K73–K76.
Geballe, T. H.; Matthias, B. T.; Andres, K.; Maita, J. P.; Cooper, A. S.; Corenzwit, E. Magnetic ordering in the rare-earth hexaborides. Science 1968, 3835, 1443–1444.
Zhitomirsky, M. E.; Rice, T. M.; Anisimov, V. I. Ferromagnetism in the hexaborides. Nature 1999, 6759, 251–253.
Mori, T. Thermoelectric and magnetic properties of rare earth borides: boron cluster and layered compounds. J. Solid State Chem. 2019, 70–82.
Pyykkö, P. Dirac-Fock One-centre calculations part 8. The1Σ states of ScH, YH, LaH, AcH, TmH, LuH and LrH. Physica Scripta 1979, 5-6, 647–651.
Kaupp, M. The role of radial nodes of atomic orbitals for chemical bonding and the periodic table. J. Comput. Chem. 2007, 1, 320–325.
Tang, Y.; Zhao, S.; Long, B.; Liu, J. C.; Li, J. On the nature of support effects of metal dioxides MO2 (M = Ti, Zr, Hf, Ce, Th) in single-atom gold catalysts: importance of quantum primogenic effect. J. Phys. Chem. C 2016, 31, 17514–17526.
Lu, J. B.; Cantu, D. C.; Nguyen, M. T.; Li, J.; Glezakou, V. A.; Rousseau, R. Norm-conserving pseudopotentials and basis sets to explore lanthanide chemistry in complex environments. J. Chem. Theory Comput. 2019, 11, 5987–5997.
Takao Mori: encyclopedia of inorganic and bioinorganic chemistry. John Wiley & Sons, Ltd: Online 2012, DOI: 10.1002/9781119951438.eibc2028.
Chen, X.; Chen, T. T.; Li, W. L.; Lu, J. B.; Zhao, L. J.; Jian, T.; Hu, H. S.; Wang, L. S.; Li, J. Lanthanides with unusually low oxidation states in the PrB3- and PrB4- boride clusters. Inorg. Chem. 2019, 1, 411–418.
Robinson, P. J.; Zhang, X.; McQueen, T.; Bowen, K. H.; Alexandrova, A. N. SmB6 cluster anion: covalency involving f orbitals. J. Phys. Chem. A 2017, 8, 1849–1854.
Chen, T. T.; Li, W. L.; Jian, T.; Chen, X.; Li, J.; Wang, L. S. PrB7-: a praseodymium-doped boron cluster with a PrⅡ center coordinated by a doubly aromatic planar η7-B73- ligand. Angew. Chem. Int. Ed. 2017, 24, 6916–6920.
Li, W. L.; Chen, T. T.; Xing, D. H.; Chen, X.; Li, J.; Wang, L. S. Observation of highly stable and symmetric lanthanide octa-boron inverse sandwich complexes. Proc. Natl. Acad. Sci. USA 2018, 30, E6972–E6977.
Chen, T. T.; Li, W. L.; Li, J.; Wang, L. S. [La(ηx-Bx)La]− (x = 7~9): a new class of inverse sandwich complexes. Chem. Sci. 2019, 8, 2534–2542.
Chen, T. T.; Li, W. L.; Chen, W. J.; Li, J.; Wang, L. S. La3B14−: an inverse triple-decker lanthanide boron cluster. Chem. Commun. 2019, 54, 7864–7867.
Duff, A. W.; Jonas, K.; Goddard, R.; Kraus, H. J. and Krueger, C. The first triple-decker sandwich with a bridging benzene ring. J. Am. Chem. Soc. 1983, 5479–5480.
Schier, A.; Wallis, J. M.; Müller, G.; Schmidbaur, H. [C6H3(CH3)3][BiCl3] and [C6(CH3)6][BiCl3]2, arene complexes of bismuth with half-sandwich and "inverted" sandwich structures. Angew. Chem. Int. Ed. Engl. 1986, 8, 757–759.
Streitwieser, A.; Smith, K. A. Inverse sandwich compounds. J. Mol. Struct. Theochem. 1988, 259–265.
Arliguie, T.; Lance, M.; Nierlich, M.; Vigner, J.; Ephritikhine, M. Inverse cycloheptatrienyl sandwich complexes. Crystal structure of [U(BH4)2(OC4H8)5][(BH4)3U(μ-η7, η7-C7H7)U(BH4)3]. J. Chem. Soc., Chem. Commun. 1994, 7, 847–848.
Krieck, S.; Görls, H.; Yu, L.; Reiher, M.; Westerhausen, M. Stable "inverse" sandwich complex with unprecedented organocalcium(I): crystal structures of [(thf)2Mg(Br)-C6H2-2, 4, 6-Ph3] and [(thf)3Ca{μ-C6H3-1, 3, 5-Ph3}Ca(thf)3]. J. Am. Chem. Soc. 2009, 8, 2977–2985.
Diaconescu, P. L.; Arnold, P. L.; Baker, T. A.; Mindiola, D. J.; Cummins, C. C. Arene-bridged diuranium complexes: inverted sandwiches supported by δ backbonding. J. Am. Chem. Soc. 2000, 25, 6108–6109.
Li, J.; Liu, C. W.; Lu, J. X. Quantum chemical studies on the bonding characteristics of some M3X4 transition-metal halogenide clusters. J. Cluster Sci. 1994, 505–521.
Li, J.; Liu, C. W.; Lu, J. X. Abinitio studies on the electronic-structures of certain 10-π-electron 6-membered ring compounds. J. Mol. Struct. Theochem. 1993, 2-3, 223–231.
Zubarev, D. Y.; Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 2008, 34, 5207–5217.
Li, W. L.; Chen, T. T.; Xing, D. H.; Chen, X.; Li, J.; Wang, L. S. Observation of highly stable and symmetric lanthanide octa-boron inverse sandwich complexes. Proc. Natl. Acad. Sci. USA 2018, 30, E6972–E6977.
Li, W. L.; Ertural, C.; Bogdanovski, D.; Li, J.; Dronskowski, R. Chemical bonding of crystalline LnB6 (Ln = LaLu) and its relationship with Ln2B8 gas-phase complexes. Inorg. Chem. 2018, 20, 12999–13008.
Wyckoff, R. W. G. : The Structure of Crystals. Chemical Catalog Company 1924.
Lu, J. X.; Zhuang, B. T. A unit conrstruction approach to the rational synthese of transition metal cabane-lake clusters by the use of reactive fragments as buioding blocks. Chin. J. Struct. Chem. 1989, 04, 233–248.
Cao, C. S.; Hu, H. S.; Li, J.; Schwarz, W. H. E. Physical origin of chemical periodicities in the system of elements. Pure and Appl. Chem. 2019, 12, 1969–1999.
Hongdao LI , Shengjian ZHANG , Hongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
Yanrui Liu , Paramaguru Ganesan , Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369
Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
Dong-Sheng Deng , Su-Qin Tang , Yong-Tu Yuan , Ding-Xiong Xie , Zhi-Yuan Zhu , Yue-Mei Huang , Yun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417
Zhengzheng LIU , Pengyun ZHANG , Chengri WANG , Shengli HUANG , Guoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
Wei Sun , Anjing Liao , Li Lei , Xu Tang , Ya Wang , Jian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855
Xinlong Han , Huiying Zeng , Chao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817
Wen-Bo Wei , Qi-Long Zhu . Electrosynthesis of hydroxylamine from earth-abundant small molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100383-100383. doi: 10.1016/j.cjsc.2024.100383
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Yin-Hang Chai , Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322
Xue-Jiao Wang , Jun-Li Xin , Hong Xiang , Ze-Yu Zhao , Yu-Hang He , Haibo Wang , Guangyao Mei , Yi-Cheng Mao , Juan Xiong , Jin-Feng Hu . Holotrichones A and B, potent anti-leukemic lindenane-type sesquiterpene trimers with unprecedented complex carbon skeletons from a rare Chloranthus species. Chinese Chemical Letters, 2024, 35(12): 109682-. doi: 10.1016/j.cclet.2024.109682
Yaping Zhang , Wei Zhou , Mingchun Gao , Tianqi Liu , Bingxin Liu , Chang-Hua Ding , Bin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836
Zeyu Jiang , Yadi Wang , Changwei Chen , Chi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400
Lu Huang , Jiang Wang , Hong Jiang , Lanfang Chen , Huanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896
Yuling Ma , Dongqing Liu , Tao Zhang , Chengjie Song , Dongmei Liu , Peizhi Wang , Wei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
Xiao Yu , Dongyue Cui , Mengmeng Wang , Zhaojin Wang , Mengzhu Wang , Deshuang Tu , Vladimir Bregadze , Changsheng Lu , Qiang Zhao , Runfeng Chen , Hong Yan . Boron cluster-based TADF emitter via through-space charge transfer enabling efficient orange-red electroluminescence. Chinese Chemical Letters, 2025, 36(3): 110520-. doi: 10.1016/j.cclet.2024.110520