Citation: Wan-Lu LI, Teng-Teng CHEN, Zhi-Yu JIAING, Lai-Sheng WANG, Jun LI. Recent Progresses in the Investigation of Rare-earth Boron Inverse Sandwich Clusters[J]. Chinese Journal of Structural Chemistry, ;2020, 39(6): 1009-1018. doi: 10.14102/j.cnki.0254-5861.2011-2891 shu

Recent Progresses in the Investigation of Rare-earth Boron Inverse Sandwich Clusters

  • Corresponding author: Lai-Sheng WANG, lai-sheng_wang@brown.edu Jun LI, junli@tsinghua.edu.cn
  • Received Date: 28 May 2020
    Accepted Date: 1 June 2020

    Fund Project: the National Natural Science Foundation of China 91645203the National Natural Science Foundation of China 21433005the National Natural Science Foundation of China 21590792the experimental work done at Brown University was supported by the U.S. National Science Foundation CHE-1763380The support of Guangdong Provincial Key Laboratory of Catalysis 2020B121201002

Figures(8)

  • While rare-earth borides represent a class of important materials in modern industries, there are few fundamental researches on their electronic structures and physicochemical properties. Recently, we have performed combined experimental and theoretical studies on rare-earth boron clusters and their cluster-assembled complexes, revealing a series of rare-earth inverse sandwich clusters with fascinating electronic structures and chemical bonding patterns. In this overview article, we summarize recent progresses in this area and provide a perspective view on the future development of rare-earth boride clusters. Understanding the electronic structures of these clusters helps to design materials of f-element (lanthanide and actinide) borides with critical physiochemical properties.
  • 加载中
    1. [1]

      Tang, A. C.; Li, Q. S.; Liu, C. W.; Li, J. Symmetrical clusters of carbon and boron. Chem. Phy. Lett. 1993, 5-6, 465-469.

    2. [2]

      Zhai, H. J.; Kiran, B.; Li, J.; Wang, L. S. Hydrocarbon analogues of boron clusters-planarity, aromaticity and antiaromaticity. Nat. Mater. 2003, 2, 827–833.  doi: 10.1038/nmat1012

    3. [3]

      Alexandrova, A. N.; Boldyrev, A. I.; Zhai, H. J.; Wang, L. S.; Steiner, E.; Fowler, P. W. Structure and bonding in B6- and B6: planarity and antiaromaticity. J. Phys. Chem. A 2003, 9, 1359–1369.

    4. [4]

      Li, W.; Hu, H.; Zhao, Y.; Chen, X.; Chen, T.; Jian, T.; Wang, L.; Li, J. Recent progress on the investigations of boron clusters and boronbased materials(I): borophene. Sci. Sinica Chim. 2018, 2, 98–107.

    5. [5]

      Li, W. L.; Chen, X.; Jian, T.; Chen, T. T.; Li, J.; Wang, L. S. From planar boron clusters to borophenes and metalloborophenes. Nat. Rev. Chem. 2017, 1, 71.  doi: 10.1038/s41570-017-0071

    6. [6]

      Sergeeva, A. P.; Popov, I. A.; Piazza, Z. A.; Li, W. L.; Romanescu, C.; Wang, L. S.; Boldyrev, A. I. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc. Chem. Res. 2014, 4, 1349–1358.

    7. [7]

      Boldyrev, A. I.; Wang, L. S. Beyond organic chemistry: aromaticity in atomic clusters. Phys. Chem. Chem. Phys. 2016, 17, 11589-11605.

    8. [8]

      Wang, L. S. Photoelectron spectroscopy of size-selected boron clusters: from planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 2016, 1, 69–142.

    9. [9]

      Bai, H.; Chen, T. T.; Chen, Q.; Zhao, X. Y.; Zhang, Y. Y.; Chen, W. J.; Li, W. L.; Cheung, L. F.; Bai, B.; Cavanagh, J.; Huang, W.; Li, S. D.; Li, J.; Wang, L. S. Planar B41 and B42 clusters with double-hexagonal vacancies. Nanoscale 2019, 48, 23286–23295.

    10. [10]

      Chen, Q.; Chen, T. T.; Li, H. R.; Zhao, X. Y.; Chen, W. J.; Zhai, H. J.; Li, S. D.; Wang, L. S. B31 and B32: chiral quasi-planar boron clusters. Nanoscale 2019, 19, 9698–9704.

    11. [11]

      Li, W. L.; Chen, Q.; Tian, W. J.; Bai, H.; Zhao, Y. F.; Hu, H. S.; Li, J.; Zhai, H. J.; Li, S. D.; Wang, L. S. The B35 cluster with a double-hexagonal vacancy: a new and more flexible structural motif for borophene. J. Am. Chem. Soc. 2014, 35, 12257–12260.

    12. [12]

      Piazza, Z. A.; Hu, H. S.; Li, W. L.; Zhao, Y. F.; Li, J.; Wang, L. S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113.  doi: 10.1038/ncomms4113

    13. [13]

      Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 6267, 1513–1516.

    14. [14]

      Feng, B.; Zhang, J.; Zhong, Q.; Li, W.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 6, 564–569.

    15. [15]

      Zhai, H. J.; Zhao, Y. F.; Li, W. L.; Chen, Q.; Bai, H.; Hu, H. S.; Piazza, Z. A.; Tian, W. J.; Lu, H. G.; Wu, Y. B.; Mu, Y. W.; Wei, G. F.; Liu, Z. P.; Li, J.; Li, S. D.; Wang, L. S. Observation of an all-boron fullerene. Nat. Chem. 2014, 8, 727–731.

    16. [16]

      Chen, Q.; Li, W. L.; Zhao, Y. F.; Zhang, S. Y.; Hu, H. S.; Bai, H.; Li, H. R.; Tian, W. J.; Lu, H. G.; Zhai, H. J.; Li, S. D.; Li, J.; Wang, L. S. Experimental and theoretical evidence of an axially chiral borospherene. ACS Nano. 2015, 1, 754–760.

    17. [17]

      Jian, T.; Chen, X.; Li, S. D.; Boldyrev, A. I.; Li, J.; Wang, L. S. Probing the structures and bonding of size-selected boron and doped-boron clusters. Chem. Soc. Rev. 2019, 13, 3550–3591.

    18. [18]

      Zhai, H. J.; Wang, L. S.; Alexandrova, A. N.; Boldyrev, A. I. Electronic structure and chemical bonding of B5 and B5 by photoelectron spectroscopy and ab initio calculations. J. Chem. Phys. 2002, 17, 7917–7924.

    19. [19]

      Alexandrova, A. N.; Boldyrev, A. I.; Zhai, H. J.; Wang, L. S.; Steiner, E.; Fowler, P. W. Structure and bonding in B6 and B6: planarity and antiaromaticity. J. Phys. Chem. A 2003, 9, 1359–1369.

    20. [20]

      Zhai, H. J.; Alexandrova, A. N.; Birch, K. A.; Boldyrev, A. I.; Wang, L. S. Hepta‐and octacoordinate boron in molecular wheels of eight‐and nine‐atom boron clusters: observation and confirmation. Angew. Chem. Int. Ed. 2003, 48, 6004–6008.

    21. [21]

      Li, W. L.; Zhao, Y. F.; Hu, H. S.; Li, J.; Wang, L. S. [B30]: a quasiplanar chiral boron cluster". Angew. Chem. Int. Ed. 2014, 53, 5540–5545.  doi: 10.1002/anie.201402488

    22. [22]

      Zhai, H. J.; Wang, L. S.; Alexandrova, A. N.; Boldyrev, A. I.; Zakrzewski, V. G. Photoelectron spectroscopy and ab initio study of B3- and B4- anions and their neutrals. J. Phys. Chem. A 2003, 44, 9319–9328.

    23. [23]

      Alexandrova, A. N.; Boldyrev, A. I.; Zhai, H. J.; Wang, L. S. Electronic structure, isomerism, and chemical bonding in B7 and B7. J. Phys. Chem. A 2004, 16, 3509–3517.

    24. [24]

      Dennington, R.; Keith, T.; Millam, J. GaussView, version 4.1; Semichem, Inc., Shawnee Mission, KS 2007.

    25. [25]

      Chung, H. Y.; Weinberger, M. B.; Levine, J. B.; Kavner, A.; Yang, J. M.; Tolbert, S. H.; Kaner, R. B. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science 2007, 5823, 436–439.

    26. [26]

      Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem. Rev. 2013, 10, 7981–8065.

    27. [27]

      Sussardi, A.; Tanaka, T.; Khan, A. U.; Schlapbach, L.; Mori, T. Enhanced thermoelectric properties of samarium boride. J. Materiomics 2015, 3, 196–204.

    28. [28]

      Scheifers, J. P.; Zhang, Y.; Fokwa, B. P. T. Boron: enabling exciting metal-rich structures and magnetic properties. Acc. Chem. Res. 2017, 9, 2317–2325.

    29. [29]

      Akopov, G.; Yeung, M. T.; Kaner, R. B. Rediscovering the crystal chemistry of borides. Adv. Mater. 2017, 21, 1604506.

    30. [30]

      Paderno, Y. B.; Pokrzywnicki, S.; Staliński, B. Magnetic properties of some rare earth hexaborides. Phys. Status Solidi b-Basic Res. 1967, 1, K73–K76.

    31. [31]

      Geballe, T. H.; Matthias, B. T.; Andres, K.; Maita, J. P.; Cooper, A. S.; Corenzwit, E. Magnetic ordering in the rare-earth hexaborides. Science 1968, 3835, 1443–1444.

    32. [32]

      Zhitomirsky, M. E.; Rice, T. M.; Anisimov, V. I. Ferromagnetism in the hexaborides. Nature 1999, 6759, 251–253.

    33. [33]

      Mori, T. Thermoelectric and magnetic properties of rare earth borides: boron cluster and layered compounds. J. Solid State Chem. 2019, 70–82.

    34. [34]

      Pyykkö, P. Dirac-Fock One-centre calculations part 8. The1Σ states of ScH, YH, LaH, AcH, TmH, LuH and LrH. Physica Scripta 1979, 5-6, 647–651.

    35. [35]

      Kaupp, M. The role of radial nodes of atomic orbitals for chemical bonding and the periodic table. J. Comput. Chem. 2007, 1, 320–325.

    36. [36]

      Tang, Y.; Zhao, S.; Long, B.; Liu, J. C.; Li, J. On the nature of support effects of metal dioxides MO2 (M = Ti, Zr, Hf, Ce, Th) in single-atom gold catalysts: importance of quantum primogenic effect. J. Phys. Chem. C 2016, 31, 17514–17526.

    37. [37]

      Lu, J. B.; Cantu, D. C.; Nguyen, M. T.; Li, J.; Glezakou, V. A.; Rousseau, R. Norm-conserving pseudopotentials and basis sets to explore lanthanide chemistry in complex environments. J. Chem. Theory Comput. 2019, 11, 5987–5997.

    38. [38]

      Takao Mori: encyclopedia of inorganic and bioinorganic chemistry. John Wiley & Sons, Ltd: Online 2012, DOI: 10.1002/9781119951438.eibc2028.

    39. [39]

      Chen, X.; Chen, T. T.; Li, W. L.; Lu, J. B.; Zhao, L. J.; Jian, T.; Hu, H. S.; Wang, L. S.; Li, J. Lanthanides with unusually low oxidation states in the PrB3- and PrB4- boride clusters. Inorg. Chem. 2019, 1, 411–418.

    40. [40]

      Robinson, P. J.; Zhang, X.; McQueen, T.; Bowen, K. H.; Alexandrova, A. N. SmB6 cluster anion: covalency involving f orbitals. J. Phys. Chem. A 2017, 8, 1849–1854.

    41. [41]

      Chen, T. T.; Li, W. L.; Jian, T.; Chen, X.; Li, J.; Wang, L. S. PrB7-: a praseodymium-doped boron cluster with a Pr center coordinated by a doubly aromatic planar η7-B73- ligand. Angew. Chem. Int. Ed. 2017, 24, 6916–6920.

    42. [42]

      Li, W. L.; Chen, T. T.; Xing, D. H.; Chen, X.; Li, J.; Wang, L. S. Observation of highly stable and symmetric lanthanide octa-boron inverse sandwich complexes. Proc. Natl. Acad. Sci. USA 2018, 30, E6972–E6977.

    43. [43]

      Chen, T. T.; Li, W. L.; Li, J.; Wang, L. S. [La(ηx-Bx)La] (x = 7~9): a new class of inverse sandwich complexes. Chem. Sci. 2019, 8, 2534–2542.

    44. [44]

      Chen, T. T.; Li, W. L.; Chen, W. J.; Li, J.; Wang, L. S. La3B14: an inverse triple-decker lanthanide boron cluster. Chem. Commun. 2019, 54, 7864–7867.

    45. [45]

      Duff, A. W.; Jonas, K.; Goddard, R.; Kraus, H. J. and Krueger, C. The first triple-decker sandwich with a bridging benzene ring. J. Am. Chem. Soc. 1983, 5479–5480.

    46. [46]

      Schier, A.; Wallis, J. M.; Müller, G.; Schmidbaur, H. [C6H3(CH3)3][BiCl3] and [C6(CH3)6][BiCl3]2, arene complexes of bismuth with half-sandwich and "inverted" sandwich structures. Angew. Chem. Int. Ed. Engl. 1986, 8, 757–759.

    47. [47]

      Streitwieser, A.; Smith, K. A. Inverse sandwich compounds. J. Mol. Struct. Theochem. 1988, 259–265.

    48. [48]

      Arliguie, T.; Lance, M.; Nierlich, M.; Vigner, J.; Ephritikhine, M. Inverse cycloheptatrienyl sandwich complexes. Crystal structure of [U(BH4)2(OC4H8)5][(BH4)3U(μ-η7, η7-C7H7)U(BH4)3]. J. Chem. Soc., Chem. Commun. 1994, 7, 847–848.

    49. [49]

      Krieck, S.; Görls, H.; Yu, L.; Reiher, M.; Westerhausen, M. Stable "inverse" sandwich complex with unprecedented organocalcium(I): crystal structures of [(thf)2Mg(Br)-C6H2-2, 4, 6-Ph3] and [(thf)3Ca{μ-C6H3-1, 3, 5-Ph3}Ca(thf)3]. J. Am. Chem. Soc. 2009, 8, 2977–2985.

    50. [50]

      Diaconescu, P. L.; Arnold, P. L.; Baker, T. A.; Mindiola, D. J.; Cummins, C. C. Arene-bridged diuranium complexes:   inverted sandwiches supported by δ backbonding. J. Am. Chem. Soc. 2000, 25, 6108–6109.

    51. [51]

      Li, J.; Liu, C. W.; Lu, J. X. Quantum chemical studies on the bonding characteristics of some M3X4 transition-metal halogenide clusters. J. Cluster Sci. 1994, 505–521.

    52. [52]

      Li, J.; Liu, C. W.; Lu, J. X. Abinitio studies on the electronic-structures of certain 10-π-electron 6-membered ring compounds. J. Mol. Struct. Theochem. 1993, 2-3, 223–231.

    53. [53]

      Zubarev, D. Y.; Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 2008, 34, 5207–5217.

    54. [54]

      Li, W. L.; Chen, T. T.; Xing, D. H.; Chen, X.; Li, J.; Wang, L. S. Observation of highly stable and symmetric lanthanide octa-boron inverse sandwich complexes. Proc. Natl. Acad. Sci. USA 2018, 30, E6972–E6977.

    55. [55]

      Li, W. L.; Ertural, C.; Bogdanovski, D.; Li, J.; Dronskowski, R. Chemical bonding of crystalline LnB6 (Ln = LaLu) and its relationship with Ln2B8 gas-phase complexes. Inorg. Chem. 2018, 20, 12999–13008.

    56. [56]

      Wyckoff, R. W. G. : The Structure of Crystals. Chemical Catalog Company 1924.

    57. [57]

      Lu, J. X.; Zhuang, B. T. A unit conrstruction approach to the rational synthese of transition metal cabane-lake clusters by the use of reactive fragments as buioding blocks. Chin. J. Struct. Chem. 1989, 04, 233–248.

    58. [58]

      Cao, C. S.; Hu, H. S.; Li, J.; Schwarz, W. H. E. Physical origin of chemical periodicities in the system of elements. Pure and Appl. Chem. 2019, 12, 1969–1999.

  • 加载中
    1. [1]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    2. [2]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    3. [3]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    4. [4]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    5. [5]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    6. [6]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    7. [7]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    8. [8]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    9. [9]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    10. [10]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    11. [11]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    12. [12]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    13. [13]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    14. [14]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    15. [15]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    16. [16]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    17. [17]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    18. [18]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    19. [19]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    20. [20]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

Metrics
  • PDF Downloads(1)
  • Abstract views(203)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return