Preparation and Reaction of Naked Metal Clusters for Catalysis and Genetic Materials
- Corresponding author: Zhi-Xun LUO, zxluo@iccas.ac.cn ② These authors contribute equally to this work
Citation: Chao-Nan CUI, Han-Yu ZHANG, Zhi-Xun LUO, Feng PAN. Preparation and Reaction of Naked Metal Clusters for Catalysis and Genetic Materials[J]. Chinese Journal of Structural Chemistry, ;2020, 39(6): 989-998. doi: 10.14102/j.cnki.0254-5861.2011-2886
Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.
doi: 10.1021/acs.chemrev.7b00776
Takahashi, K.; Takahashi, L. Data driven determination in growth of silver from clusters to nanoparticles and bulk. J. Phys. Chem. Lett. 2019, 10, 4063–4068.
doi: 10.1021/acs.jpclett.9b01394
Tyo, E. C.; Vajda, S. Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 2015, 10, 577–588.
doi: 10.1038/nnano.2015.140
Jena, P.; Sun, Q. Super atomic clusters: design rules and potential for building blocks of materials. Chem. Rev. 2018, 118, 5755–5780.
doi: 10.1021/acs.chemrev.7b00524
Jiang, D. E.; Tiago, M. L.; Luo, W.; Dai, S. The "staple" motif: a key to stability of thiolate-protected gold nanoclusters. J. Am. Chem. Soc. 2008, 130, 2777–2779.
doi: 10.1021/ja710991n
Hu, G.; Jin, R.; Jiang, D. E. Beyond the staple motif: a new order at the thiolate-gold interface. Nanoscale 2016, 8, 20103–20110.
doi: 10.1039/C6NR07709A
Chevrier, D. M.; Zeng, C.; Jin, R.; Chatt, A.; Zhang, P. Role of au4 units on the electronic and bonding properties of Au28(SR)20 nanoclusters from X-ray spectroscopy. J. Phy. Chem. C 2014, 119, 1217–1223.
Tlahuice-Flores, A. New polyhedra approach to explain the structure and evolution on size of thiolated gold clusters. J. Phy. Chem. C 2019, 123, 10831–10841.
doi: 10.1021/acs.jpcc.9b02265
Yang, H.; Lei, J.; Wu, B.; Wang, Y.; Zhou, M.; Xia, A.; Zheng, L.; Zheng, N. Crystal structure of a luminescent thiolated ag nanocluster with an octahedral Ag6(4+) core. Chem. Commun. (Camb) 2013, 49, 300–302.
doi: 10.1039/C2CC37347E
Song, Y.; Wang, S.; Zhang, J.; Kang, X.; Chen, S.; Li, P.; Sheng, H.; Zhu, M. Crystal structure of selenolate-protected Au24(SeR)20 nanocluster. J. Am. Chem. Soc. 2014, 136, 2963–2965.
doi: 10.1021/ja4131142
Harkness, K. M.; Tang, Y.; Dass, A.; Pan, J.; Kothalawala, N.; Reddy, V. J.; Cliffel, D. E.; Demeler, B.; Stellacci, F.; Bakr, O. M. Ag44(SR)304−: a silver-thiolate superatom complex. Nanoscale 2012, 4, 4269–4274.
doi: 10.1039/c2nr30773a
Yang, H.; Wang, Y.; Huang, H.; Gell, L.; Lehtovaara, L.; Malola, S.; Hakkinen, H.; Zheng, N. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 2013, 4, 2422.
doi: 10.1038/ncomms3422
Yuan, S. F.; Xu, C. Q.; Li, J.; Wang, Q. M. A ligand-protected golden fullerene: the dipyridylamido Au328+ nanocluster. Angew. Chem. Int. Ed. 2019, 5906–5909.
Jia, Y.; Luo, Z. Thirteen-atom metal clusters for genetic materials. Coord. Chem. Rev. 2019, 400, 213053.
doi: 10.1016/j.ccr.2019.213053
Chen, Y.; Zeng, C.; Liu, C.; Kirschbaum, K.; Gayathri, C.; Gil, R. R.; Rosi, N. L.; Jin, R. Crystal structure of barrel-shaped chiral Au130(p-mbt)50 nanocluster. J. Am. Chem. Soc. 2015, 137, 10076–10079.
doi: 10.1021/jacs.5b05378
Wan, X. K.; Lin, Z. W.; Wang, Q. M. Au20 nanocluster protected by hemilabile phosphines. J. Am. Chem. Soc. 2012, 134, 14750–14752.
doi: 10.1021/ja307256b
Zeng, C. J.; Liu, C.; Chen, Y. X.; Rosi, N. L.; Jin, R. C. Gold-thiolate ring as a protecting motif in the Au20(SR)16 nanocluster and implications. J. Am. Chem. Soc. 2014, 136, 11922–11925.
doi: 10.1021/ja506802n
Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 2008, 130, 5883–5885.
doi: 10.1021/ja801173r
Crasto, D.; Malola, S.; Brosofsky, G.; Dass, A.; Hakkinen, H. Single crystal XRD structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster. J. Am. Chem. Soc. 2014, 136, 5000–5005.
doi: 10.1021/ja412141j
Yang, H. Y.; Wang, Y.; Edwards, A. J.; Yan, J. Z.; Zheng, N. F. High-yield synthesis and crystal structure of a green Au30 cluster co-capped by thiolate and sulfide. Chem. Commun. 2014, 50, 14325–14327.
doi: 10.1039/C4CC01773K
Zeng, C. J.; Qian, H. F.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. C. Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew. Chem. Int. Ed. 2012, 51, 13114–13118.
doi: 10.1002/anie.201207098
Das, A.; Liu, C.; Zeng, C. J.; Li, G.; Li, T.; Rosi, N. L.; Jin, R. C. Cyclopentanethiolato-protected Au36(SC5H9)24 nanocluster: crystal structure and implications for the steric and electronic effects of ligand. J. Phys. Chem. A 2014, 118, 8264–8269.
Qian, H. F.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. C. Total structure determination of thiolate-protected au38 nanoparticles. J. Am. Chem. Soc. 2010, 132, 8280–8281.
doi: 10.1021/ja103592z
Boyen, H. G.; Kastle, G.; Weigl, F.; Koslowski, B.; Dietrich, C.; Ziemann, P.; Spatz, J. P.; Riethmuller, S.; Hartmann, C.; Moller, M.; Schmid, G.; Garnier, M. G.; Oelhafen, P. Oxidation-resistant gold-55 clusters. Science 2002, 297, 1533–1536.
doi: 10.1126/science.1076248
Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 2008, 454, 981–983.
doi: 10.1038/nature07194
Chang, C. M.; Cheng, C.; Wei, C. M. Co oxidation on unsupported Au55, Ag55, and Au25Ag30 nanoclusters. J. Chem. Phys. 2008, 128, 124710.
doi: 10.1063/1.2841364
Song, Y.; Fu, F.; Zhang, J.; Chai, J.; Kang, X.; Li, P.; Li, S.; Zhou, H.; Zhu, M. The magic Au60 nanocluster: a new cluster-assembled material with five Au13 building blocks. Angew. Chem. Int. Ed. 2015, 54, 8430–8434.
doi: 10.1002/anie.201501830
Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 angstrom resolution. Science 2007, 318, 430–433.
doi: 10.1126/science.1148624
Schmid, G. The relevance of shape and size of Au55 clusters. Chem. Soc. Rev. 2008, 37, 1909–1930.
doi: 10.1039/b713631p
Shichibu, Y.; Suzuki, K.; Konishi, K. Facile synthesis and optical properties of magic-number Au13 clusters. Nanoscale 2012, 4, 4125–4129.
doi: 10.1039/c2nr30675a
Wang, J. L.; Wang, G. H.; Zhao, J. J. Density-functional study of Au-n (n = 2~20) clusters: lowest-energy structures and electronic properties. Phys. Rev. B 2002, 66, 035418.
doi: 10.1103/PhysRevB.66.035418
Zhao, J.; Yang, J. L.; Hou, J. G. Theoretical study of small two-dimensional gold clusters. Phys. Rev. B 2003, 67, 085404.
doi: 10.1103/PhysRevB.67.085404
Xiao, L.; Tollberg, B.; Hu, X. K.; Wang, L. C. Structural study of gold clusters. J. Chem. Phys. 2006, 124, 114309.
doi: 10.1063/1.2179419
Gruber, M.; Heimel, G.; Romaner, L.; Bredas, J. L.; Zojer, E. First-principles study of the geometric and electronic structure of Au(13) clusters: importance of the prism motif. Phys. Rev. B 2008, 77, 165411.
doi: 10.1103/PhysRevB.77.165411
Shafai, G.; Hong, S.; Bertino, M.; Rahman, T. S. Effect of ligands on the geometric and electronic structure of Au-13 clusters. J. Phys. Chem. C 2009, 113, 12072–12078.
doi: 10.1021/jp811200e
Ding, W.; Huang, C.; Guan, L.; Liu, X.; Luo, Z.; Li, W. Water-soluble Au 13 clusters protected by binary thiolates: structural accommodation and the use for chemosensing. Chem. Phys. Lett. 2017, 676, 18–24.
doi: 10.1016/j.cplett.2017.03.036
Vandervelden, J. W. A.; Vollenbroek, F. A.; Bour, J. J.; Beurskens, P. T.; Smits, J. M. M.; Bosman, W. P. Gold clusters containing bidentate phosphine-ligands-preparation and X-ray structure investigation of Au5(dppmH)3(dppm)(NO3)2 and Au13(dppmH)6(NO3)n. Recl. Trav. Chim. Pays-Bas 1981, 100, 148–152.
doi: 10.1002/recl.19811000404
Briant, C. E.; Theobald, B. R. C.; White, J. W.; Bell, L. K.; Mingos, D. M. P.; Welch, A. J. Synthesis and X-ray structural characterization of the centered icosahedral gold cluster compound Au13(PMe2Ph)10Cl2(PF6)3- the realization of a theoretical prediction. J. Chem. Soc., Chem. Commun. 1981, 201–202.
Zhang, H.; Reber, A. C.; Geng, L.; Rabayda, D.; Wu, H.; Luo, Z.; Yao, J.; Khanna, S. N. Formation of Al+(C6H6)13: the origin of magic number in metal-benzene clusters determined by the nature of the core. CCS Chemistry 2019, 1, 571–581.
doi: 10.31635/ccschem.019.20190033
Luo, Z.; Castleman, A. W. Jr.; Khanna, S. N. Reactivity of metal clusters. Chem. Rev. 2016, 116, 14456–14492.
doi: 10.1021/acs.chemrev.6b00230
Zhang, X.; Wang, Y.; Wang, H.; Lim, A.; Gantefoer, G.; Bowen, K. H.; Reveles, J. U.; Khanna, S. N. On the existence of designer magnetic superatoms. J. Am. Chem. Soc. 2013, 135, 4856–4861.
doi: 10.1021/ja400830z
Imaoka, T.; Kitazawa, H.; Chun, W. J.; Omura, S.; Albrecht, K.; Yamamoto, K. Magic number Pt-13 and misshapen Pt-12 clusters: which one is the better catalyst? J. Am. Chem. Soc. 2013, 135, 13089–13095.
doi: 10.1021/ja405922m
Luo, Z.; Castleman, A. W. Special and general superatoms. Acc. Chem. Res. 2014, 47, 2931–2940.
doi: 10.1021/ar5001583
Wu, H. M.; Luo, Z. X. Chlorine-passivated superatom Al37 clusters for nonlinear optics. Sci. China-Chem. 2018, 61, 1619–1623.
doi: 10.1007/s11426-018-9316-4
Chen, J.; Luo, Z.; Yao, J. Theoretical study of tetrahydrofuran-stabilized Al13 superatom cluster. J. Phys. Chem. A 2016, 120, 3950–3957.
Pembere, A. M.; Luo, Z. X. Jones oxidation of glycerol catalysed by small gold clusters. Phys. Chem. Chem. Phys. 2017, 19, 6620–6625.
doi: 10.1039/C6CP07941E
Negreiros, F. R.; Halder, A.; Yin, C. R.; Singh, A.; Barcaro, G.; Sementa, L.; Tyo, E. C.; Pellin, M. J.; Bartling, S.; Meiwes-Broer, K. H.; Seifert, S.; Sen, P.; Nigam, S.; Majumder, C.; Fukui, N.; Yasumatsu, H.; Vajda, S.; Fortunelli, A. Bimetallic Ag-Pt sub-nanometer supported clusters as highly efficient and robust oxidation catalysts. Angew. Chem. Int. Ed. 2018, 57, 1209–1213.
doi: 10.1002/anie.201709784
Ren, Y.; Yang, Y.; Zhao, Y. X.; He, S. G. Size-dependent reactivity of rhodium cluster anions toward methane. J. Phy. Chem. C 2019, 123, 17035–17042.
doi: 10.1021/acs.jpcc.9b04750
Huheey, J. E.; Cottrell, T. L. The Strengths of Chemical Bonds. 2nd ed ed. Academic Press: Butterworths, London 1958.
Kerr, J. A. Bond dissociation energies by kinetic methods. Chem. Rev. 1966, 66, 465–500.
doi: 10.1021/cr60243a001
Haynes, W. M. Crc Handbook of Chemistry and Physics. 95th ed.; CRC press 2014.
Yuan, Z.; Liu, Q. Y.; Li, X. N.; He, S. G. Formation, distribution, and photoreaction of nano-sized vanadium oxide cluster anions. Int. J. Mass Spectrom. 2016, 407, 62–68.
doi: 10.1016/j.ijms.2016.07.004
Dietz, T. G.; Duncan, M. A.; Powers, D. E.; Smalley, R. E. Laser production of supersonic metal cluster beams. J. Chem. Phys. 1981, 74, 6511–6512.
doi: 10.1063/1.440991
Geusic, M. E.; Morse, M. D.; O'Brien, S. C.; Smalley, R. E. Surface reactions of metal clusters i: the fast flow cluster reactor. Rev. Sci. Instrum. 1985, 56, 2123–2130.
doi: 10.1063/1.1138381
Haberland, H.; Karrais, M.; Mall, M.; Thurner, Y. Thin films from energetic cluster impact: a feasibility study. J. Vac. Sci. Technol. A 1992, 10, 3266–3271.
doi: 10.1116/1.577853
Goldby, I. M.; vonIssendorff, B.; Kuipers, L.; Palmer, R. E. Gas condensation source for production and deposition of size-selected metal clusters. Rev. Sci. Instrum. 1997, 68, 3327–3334.
doi: 10.1063/1.1148292
Pratontep, S.; Carroll, S. J.; Xirouchaki, C.; Streun, M.; Palmer, R. E. Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation. Rev. Sci. Instrum. 2005, 76, 045103.
doi: 10.1063/1.1869332
Luo, Z.; Woodward, W. H.; Smith, J. C.; Castleman, A. W. Jr. Growth kinetics of al clusters in the gas phase produced by a magnetron-sputtering source. Int. J. Mass Spectrom. 2012, 309, 176–181.
doi: 10.1016/j.ijms.2011.09.016
Larsen, R. A.; Neoh, S. K.; Herschbach, D. R. Seeded supersonic alkali atom beams. Rev. Sci. Instrum. 1974, 45, 1511–1516.
doi: 10.1063/1.1686549
Preuss, D. R.; Pace, S. A.; Gole, J. L. Supersonic expansion of pure copper vapor. J. Chem. Phys. 1979, 71, 3553–3560.
doi: 10.1063/1.438811
Sattler, K.; Muhlbach, J.; Recknagel, E. Generation of metal-clusters containing from 2 to 500 atoms. Phys. Rev. Lett. 1980, 45, 821–824.
doi: 10.1103/PhysRevLett.45.821
Riley, S. J.; Parks, E. K.; Mao, C. R.; Pobo, L. G.; Wexler, S. Generation of continuous beams of refractory-metal clusters. J. Phys. Chem. 1982, 86, 3911–3913.
doi: 10.1021/j100217a004
Knight, W. D.; Clemenger, K.; Deheer, W. A.; Saunders, W. A.; Chou, M. Y.; Cohen, M. L. Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 1984, 52, 2141–2143.
doi: 10.1103/PhysRevLett.52.2141
Han, K. L.; Lu, R. C.; Lin, H.; Gallogy, E. B.; Jackson, W. M. Formation of a supersonic beam of C60H2x in a knudsen oven source containing C60 and hydrogen. Chem. Phys. Lett. 1995, 243, 29–35.
doi: 10.1016/0009-2614(95)00787-5
Satoh, N.; Kimura, K. High-resolution solid-state nmr in liquids. 2. Aluminum-27 nmr study of aluminum trifluoride ultrafine particles. J. Am. Chem. Soc. 1990, 112, 4688–4692.
doi: 10.1021/ja00168a010
Haberland, H. Clusters of Atoms and Molecules: Theory, Experiment, and Clusters of Atoms. Springer-Verlag 1994, p422.
Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B. Molecular beams of macroions. J. Chem. Phys. 1968, 49, 2240–2249.
doi: 10.1063/1.1670391
Yamashita, M.; Fenn, J. B. Electrospray ion-source - another variation on the free-jet theme. J. Phys. Chem. 1984, 88, 4451–4459.
doi: 10.1021/j150664a002
Whitehouse, C.; Dreyer, R.; Yamashita, M.; Fenn, J. B. Electrospray interface for liquid chromatographs and mass spectrometers. Anal. Chem. 1985, 57, 675–679.
doi: 10.1021/ac00280a023
Zhang, H.; Wu, H.; Jia, Y.; Geng, L.; Luo, Z.; Fu, H.; Yao, J. An integrated instrument of DUV-IR photoionization mass spectrometry and spectroscopy for neutral clusters. Rev. Sci. Instrum. 2019, 90, 073101.
doi: 10.1063/1.5108994
Duncan, M. A. Invited review article: laser vaporization cluster sources. Rev. Sci. Instrum. 2012, 83, 041101.
doi: 10.1063/1.3697599
Yuan, C.; Liu, X.; Zeng, C.; Zhang, H.; Jia, M.; Wu, Y.; Luo, Z.; Fu, H.; Yao, J. All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry. Rev. Sci. Instrum. 2016, 87, 024102.
doi: 10.1063/1.4941841
Armstrong, A.; Zhang, H.; Reber, A. C.; Jia, Y.; Wu, H.; Luo, Z.; Khanna, S. N. Al valence controls the coordination and stability of cationic aluminum-oxygen clusters in reactions of Aln+ with oxygen. J. Phys. Chem. A 2019, 123, 7463–7469.
doi: 10.1021/acs.jpca.9b05646
Zhang, H.; Wu, H.; Geng, L.; Jia, Y.; Yang, M.; Luo, Z. Furthering the reaction mechanism of cationic vanadium clusters towards oxygen. Phys. Chem. Chem. Phys. 2019, 21, 11234–11241.
doi: 10.1039/C9CP01192G
Yang, M.; Zhang, H.; Jia, Y.; Yin, B.; Luo, Z. Charge-sensitive cluster-π interactions cause altered reactivity of Aln±, 0 clusters with benzene: enhanced stability of Al13+bz. J. Phys. Chem. A 2020.
Yang, M.; Wu, H.; Huang, B.; Luo, Z.; Hansen, K. Iodization threshold in size-dependent reactions of lead clusters Pbn+ with iodomethane. J. Phys. Chem. A 2020, 124, 2505–2512.
Knight, W. D.; Clemenger, K.; de Heer, W. A.; Saunders, W. A.; Chou, M. Y.; Cohen, M. L. Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 1984, 52, 2141–2143.
doi: 10.1103/PhysRevLett.52.2141
Brack, M. The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev. Mod. Phys. 1993, 65, 677–732.
doi: 10.1103/RevModPhys.65.677
de Heer, W. A. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 1993, 65, 611–676.
doi: 10.1103/RevModPhys.65.611
Cha, C. Y.; Ganteför, G.; Eberhardt, W. Photoelectron spectroscopy of Cu-n clusters: comparison with jellium model predictions. J. Chem. Phys. 1993, 99, 6308–6312.
doi: 10.1063/1.465868
King, R. B.; Zhao, J. The isolable matryoshka nesting doll icosahedrql cluster As@Ni–12@As–20 (3-) as a "superatom": analogy with the jellium cluster Al-13(-) generated in the gas phase by laser vaporization. Chem. Commun. 2006, 4204–4205.
Jones, C. E. Jr.; Clayborne, P. A.; Reveles, J. U.; Melko, J. J.; Gupta, U.; Khanna, S. N.; Castleman, A. W. Al(n)bi clusters: transitions between aromatic and jellium stability. J. Phys. Chem. A 2008, 112, 13316–13325.
King, R. B.; Silaghi-Dumitrescu, I. The role of "external" lone pairs in the chemical bonding of bare post-transition element clusters: the wade-mingos rules versus the jellium model. Dalton Trans. 2008, 44, 6083–6088.
Polozkov, R. G.; Ivanov, V. K.; Verkhovtsev, A. V.; Solov'yov, A. V. Stability of metallic hollow cluster systems: Jellium model approach. Phys. Rev. A 2009, 79, 063203.
doi: 10.1103/PhysRevA.79.063203
Melko, J. J.; Clayborne, P. A.; Jones, C. E.; Reveles, J. U.; Gupta, U.; Khanna, S. N.; Castleman, A. W. Combined experimental and theoretical study of AlnX (n = 1~6.; X = As, Sb) clusters: evidence of aromaticity and the jellium model. J. Phys. Chem. A 2010, 114, 2045–2052.
doi: 10.1021/jp908406h
Reber, A. C.; Khanna, S. N. Superatoms: electronic and geometric effects on reactivity. Acc. Chem. Res. 2017, 50, 255–263.
doi: 10.1021/acs.accounts.6b00464
Kuo, K. H. Mackay, anti-mackay, double-mackay, pseudo-mackay, and related icosahedral shell clusters. Struct. Chem. 2002, 13, 221–222.
doi: 10.1023/A:1015847520094
Leuchtner, R. E.; Harms, A. C.; Castleman, A. W. Thermal metal cluster anion reactions - behavior of aluminum clusters with oxygen. J. Chem. Phys. 1989, 91, 2753–2754.
doi: 10.1063/1.456988
Luo, Z.; Grover, C. J.; Reber, A. C.; Khanna, S. N.; Castleman, A. W. Jr. Probing the magic numbers of aluminum-magnesium cluster anions and their reactivity toward oxygen. J. Am. Chem. Soc. 2013, 135, 4307–4313.
doi: 10.1021/ja310467n
Li, X. L.; Kuznetsov, A. E.; Zhang, H. F.; Boldyrev, A. I.; Wang, L. S. Observation of all-metal aromatic molecules. Science 2001, 291, 859–861.
doi: 10.1126/science.291.5505.859
Luo, Z.; Gamboa, G. U.; Smith, J. C.; Reber, A. C.; Reveles, J. U.; Khanna, S. N.; Castleman, A. W. Jr. Spin accommodation and reactivity of silver clusters with oxygen: the enhanced stability of ag13-. J. Am. Chem. Soc. 2012, 134, 18973–18978.
doi: 10.1021/ja303268w
Li, J.; Li, X.; Zhai, H. J.; Wang, L. S. Au20: a tetrahedral cluster. Science 2003, 299, 864–864.
doi: 10.1126/science.1079879
Reber, A. C.; Khanna, S. N.; Roach, P. J.; Woodward, W. H.; Castleman, A. W. Jr. Reactivity of aluminum cluster anions with water: origins of reactivity and mechanisms for H–2 release. J. Phys. Chem. A 2010, 114, 6071–6081.
doi: 10.1021/jp911136s
Weichman, M. L.; Debnath, S.; Kelly, J. T.; Gewinner, S.; Schoellkopf, W.; Neumark, D. M.; Asmis, K. R. Dissociative water adsorption on gas-phase titanium dioxide cluster anions probed with infrared photodissociation spectroscopy. Top. Catal. 2018, 61, 92–105.
doi: 10.1007/s11244-017-0863-4
Pembere, A. M. S.; Liu, X. H.; Ding, W. H.; Luo, Z. X. How partial atomic charges and bonding orbitals affect the reactivity of aluminum clusters with water? J. Phys. Chem. A 2018, 122, 3107–3114.
doi: 10.1021/acs.jpca.7b10635
Zhang, H.; Cui, C.; Luo, Z. The doping effect of 13-atom iron clusters on water adsorption and O-H bond dissociation. J. Phys. Chem. A 2019, 123, 4891–4899.
doi: 10.1021/acs.jpca.9b02154
Chen, J.; Luo, Z. Single-point attack of two H2O molecules towards a Lewis acid site on the GaAl12 clusters for hydrogen evolution. Chemphyschem 2019, 20, 499–505.
doi: 10.1002/cphc.201800868
Roach, P. J.; Woodward, W. H.; Castleman, A. W. Jr.; Reber, A. C.; Khanna, S. N. Complementary active sites cause size-selective reactivity of aluminum cluster anions with water. Science 2009, 323, 492–495.
doi: 10.1126/science.1165884
Luo, Z.; Smith, J. C.; Woodward, W. H.; Castleman, A. W. Jr. Reactivity of aluminum clusters with water and alcohols: competition and catalysis? J. Phys. Chem. Lett. 2012, 3, 3818–3821.
doi: 10.1021/jz301830v
Luo, Z. X.; Smith, J. C.; Berkdemir, C.; Castleman, A. W. Jr. Gas-phase reactivity of aluminum cluster anions with ethanethiol: carbon-sulfur bond activation. Chem. Phys. Lett. 2013, 590, 63–68.
doi: 10.1016/j.cplett.2013.10.074
Luo, Z.; Gamboa, G. U.; Jia, M.; Reber, A. C.; Khanna, S. N.; Castleman, A. W. Jr. Reactivity of silver clusters anions with ethanethiol. J. Phys. Chem. A 2014, 118, 8345–8350.
doi: 10.1021/jp501164g
Luo, Z.; Berkdemir, C.; Smith, J. C.; Castleman, A. W. Jr. Cluster reaction of Ag8-/Cu8- with chlorine: evidence for the harpoon mechanism? Chem. Phys. Lett. 2013, 582, 24–30.
doi: 10.1016/j.cplett.2013.07.029
Reddy, A. S.; Zipse, H.; Sastry, G. N. Cation-pi interactions of bare and coordinatively saturated metal ions: contrasting structural and energetic characteristics. J. Phys. Chem. B 2007, 111, 11546–11553.
doi: 10.1021/jp075768l
Brathwaite, A. D.; Ward, T. B.; Walters, R. S.; Duncan, M. A. Cation-pi and ch-pi interactions in the coordination and solvation of Au+(acetylene)n complexes. J. Phys. Chem. A 2015, 119, 5658–5667.
doi: 10.1021/acs.jpca.5b03360
Yang, M.; Wu, H.; Huang, B.; Luo, Z. Cluster-pi interactions cause size-selective reactivity of cationic silver clusters with acetylene: the distinctive Ag7+ C2H2. J. Phys. Chem. A 2019, 123, 6921–6926.
doi: 10.1021/acs.jpca.9b06502
Han, M.; Wang, Z. Y.; Chen, P. P.; Yu, S. W.; Wang, G. H. Mechanism of neutral cluster beam deposition. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 1998, 135, 564–569.
doi: 10.1016/S0168-583X(97)00635-6
Dai, Y.; Gorey, T. J.; Anderson, S. L.; Lee, S.; Lee, S.; Seifert, S.; Winans, R. E. Inherent size effects on xanes of nanometer metal clusters: size-selected platinum clusters on silica. J. Phy. Chem. C 2016, 121, 361–374.
von Weber, A.; Anderson, S. L. Electrocatalysis by mass-selected ptn clusters. Acc. Chem. Res. 2016, 49, 2632–2639.
doi: 10.1021/acs.accounts.6b00387
Timoshenko, J.; Halder, A.; Yang, B.; Seifert, S.; Pellin, M. J.; Vajda, S.; Frenkel, A. I. Subnanometer substructures in nanoassemblies formed from clusters under a reactive atmosphere revealed using machine learning. J. Phys. Chem. C 2018, 122, 21686–21693.
doi: 10.1021/acs.jpcc.8b07952
Bentley, C. L.; Kang, M.; Unwin, P. R. Nanoscale surface structure-activity in electrochemistry and electrocatalysis. J. Am. Chem. Soc. 2018, 141, 2179–2193.
Wang, H.; Gu, X. K.; Zheng, X.; Pan, H.; Zhu, J.; Chen, S.; Cao, L.; Li, W. X.; Lu, J. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity. Sci. Adv. 2019, 5, eaat6413.
doi: 10.1126/sciadv.aat6413
Zhou, M.; Bao, S.; Bard, A. J. Probing size and substrate effects on the hydrogen evolution reaction by single isolated pt atoms, atomic clusters, and nanoparticles. J. Am. Chem. Soc. 2019, 141, 7327–7332.
doi: 10.1021/jacs.8b13366
Yin, C.; Negreiros, F. R.; Barcaro, G.; Beniya, A.; Sementa, L.; Tyo, E. C.; Bartling, S.; Meiwes-Broer, K. H.; Seifert, S.; Hirata, H.; Isomura, N.; Nigam, S.; Majumder, C.; Watanabe, Y.; Fortunelli, A.; Vajda, S. Alumina-supported sub-nanometer Pt10 clusters: amorphization and role of the support material in a highly active co oxidation catalyst. J. Mater. Chem. A 2017, 5, 4923–4931.
doi: 10.1039/C6TA10989F
Yang, B.; Liu, C.; Halder, A.; Tyo, E. C.; Martinson, A. B. F.; Seifer, S.; Zapol, P.; Curtiss, L. A.; Vajda, S. Copper cluster size effect in methanol synthesis from CO2. J. Phys. Chem. C 2017, 121, 10406–10412.
doi: 10.1021/acs.jpcc.7b01835
Halder, A.; Liu, C.; Liu, Z.; Emery, J. D.; Pellin, M. J.; Curtiss, L. A.; Zapol, P.; Vajda, S.; Martinson, A. B. F. Water oxidation catalysis via size-selected iridium clusters. J. Phys. Chem. C 2018, 122, 9965–9972.
doi: 10.1021/acs.jpcc.8b01318
Halder, A.; Curtiss, L. A.; Fortunelli, A.; Vajda, S. Perspective: size selected clusters for catalysis and electrochemistry. J. Chem. Phys. 2018, 148, 110901.
doi: 10.1063/1.5020301
Laskin, J.; Johnson, G. E.; Warneke, J.; Prabhakaran, V. From isolated ions to multilayer functional materials using ion soft landing. Angew Chem. Int. Ed. Engl. 2018, 57, 16270–16284.
doi: 10.1002/anie.201712296
Lei, Y.; Mehmood, F.; Lee, S.; Greeley, J.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Meyer, R. J.; Redfern, P. C.; Teschner, D.; Schlogl, R.; Pellin, M. J.; Curtiss, L. A.; Vajda, S. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 2010, 328, 224–228.
doi: 10.1126/science.1185200
Cui, C.; Luo, Z.; Yao, J. Enhanced catalysis of pt3 clusters supported on graphene for N–H bond dissociation. CCS Chemistry 2019, 1, 215–225.
doi: 10.31635/ccschem.019.20180031
Zhang, H.; Cui, C.; Luo, Z. MoS2-supported Fe2 clusters catalyzing nitrogen reduction reaction to produce ammonia. J. Phy. Chem. C 2020, 124, 6260–6266.
doi: 10.1021/acs.jpcc.0c00486
Qin, Y.; Han, J.; Guo, G.; Du, Y.; Li, Z.; Song, Y.; Pi, L.; Wang, X.; Wan, X.; Han, M.; Song, F. Enhanced quantum coherence in graphene caused by Pd cluster deposition. Appl. Phys. Lett. 2015, 106, 023108.
doi: 10.1063/1.4905868
Kwon, G.; Ferguson, G. A.; Heard, C. J.; Tyo, E. C.; Yin, C.; DeBartolo, J.; Seifert, S.; Winans, R. E.; Kropf, A. J.; Greeley, J.; Johnston, R. L.; Curtiss, L. A.; Pellin, M. J.; Vajda, S. Size-dependent subnanometer pd cluster (Pd–4, Pd–6, and Pd–17) water oxidation electrocatalysis. Acs Nano 2013, 7, 5808–5817.
doi: 10.1021/nn400772s
Miller, S. A.; Luo, H.; Pachuta, S. J.; Cooks, R. G. Soft-landing of polyatomic ions at fluorinated self-assembled monolayer surfaces. Science 1997, 275, 1447–1450.
doi: 10.1126/science.275.5305.1447
Mitsui, M.; Nagaoka, S.; Matsumoto, T.; Nakajima, A. Soft-landing isolation of vanadium-benzene sandwich clusters on a room-temperature substrate using n-alkanethiolate self-assembled monolayer matrixes. J. Phys. Chem. B 2006, 110, 2968–2971.
doi: 10.1021/jp057194v
Nesselberger, M.; Roefzaad, M.; Hamou, R. F.; Biedermann, P. U.; Schweinberger, F. F.; Kunz, S.; Schloegl, K.; Wiberg, G. K.; Ashton, S.; Heiz, U.; Mayrhofer, K. J.; Arenz, M. The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat. Mater. 2013, 12, 919–924.
doi: 10.1038/nmat3712
Wettergren, K.; Schweinberger, F. F.; Deiana, D.; Ridge, C. J.; Crampton, A. S.; Rotzer, M. D.; Hansen, T. W.; Zhdanov, V. P.; Heiz, U.; Langhammer, C. High sintering resistance of size-selected platinum cluster catalysts by suppressed ostwald ripening. Nano Lett. 2014, 14, 5803–5809.
doi: 10.1021/nl502686u
Rondelli, M.; Zwaschka, G.; Krause, M.; Rötzer, M. D.; Hedhili, M. N.; Högerl, M. P.; D'Elia, V.; Schweinberger, F. F.; Basset, J. M.; Heiz, U. Exploring the potential of different-sized supported subnanometer pt clusters as catalysts for wet chemical applications. ACS Catal. 2017, 7, 4152–4162.
doi: 10.1021/acscatal.7b00520
Run-Han Li , Tian-Yi Dang , Wei Guan , Jiang Liu , Ya-Qian Lan , Zhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
Hai-Ling Wang , Zhong-Hong Zhu , Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334
Zhengzheng LIU , Pengyun ZHANG , Chengri WANG , Shengli HUANG , Guoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039
Ziyi Liu , Xunying Liu , Lubing Qin , Haozheng Chen , Ruikai Li , Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Peiwen Liu , Fang Zhao , Jing Zhang , Yunpeng Bai , Jinxing Ye , Bo Bao , Xinggui Zhou , Li Zhang , Changlu Zhou , Xinhai Yu , Peng Zuo , Jianye Xia , Lian Cen , Yangyang Yang , Guoyue Shi , Lin Xu , Weiping Zhu , Yufang Xu , Xuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020
Xu-Hui Yue , Xiang-Wen Zhang , Hui-Min He , Lei Qiao , Zhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254
Yingxiao Zong , Yangfei Wei , Xiaoqing Liu , Junke Wang , Huanfang Guo , Junli Wang , Zhuangzhi Shi , Tao Tu , Cheng Yang , Chongyang Wang , Leyong Wang . The 4th CCL Organic Chemistry Forum held in Zhangye. Chinese Chemical Letters, 2024, 35(8): 109743-. doi: 10.1016/j.cclet.2024.109743
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
Shiqi Xu , Zi Ye , Shuang Shang , Fengge Wang , Huan Zhang , Lianguo Chen , Hao Lin , Chen Chen , Fang Hua , Chong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034
Caixia Zhu , Qing Hong , Kaiyuan Wang , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
Chao-Long Chen , Rong Chen , La-Sheng Long , Lan-Sun Zheng , Xiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209