Citation: Xin YANG, Zheng-Dong WANG, Yu-Ru FU, Qin LIU, Gao XIAO. Ca2Nb2O7 as a Novel Open-framework Anode Material for Potassium-ion Batteries[J]. Chinese Journal of Structural Chemistry, ;2021, 40(2): 233-238. doi: 10.14102/j.cnki.0254-5861.2011-2862 shu

Ca2Nb2O7 as a Novel Open-framework Anode Material for Potassium-ion Batteries

  • Corresponding author: Qin LIU, liuqin365@fjirsm.ac.cn Gao XIAO, xiaogao@fzu.edu.cn
  • Received Date: 27 April 2020
    Accepted Date: 18 June 2020

    Fund Project: the Natural Science Foundation of Fujian Province 2018J01031Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment SKLPEE-202013Natural Science Foundation of Fujian Province 2017J01412National Natural Science Foundation of China 21506036

Figures(4)

  • Potassium-ion batteries (KIBs) are a promising alternative to Lithium-based energy storage systems owning to the low cost and rich abundance of potassium resources, but are facing challenges in designing low-cost hosts that can reversibly accommodate large-size K+ with fast diffusion kinetics. Herein, we report a novel 3D inorganic open framework of Ca2Nb2O7 (CNO) as an anode for KIBs. The open framework structure affords interstitial vacancies available for storing K+ and allows a facile diffusion of K+, thus resulting in excellent structural stability and fast reaction kinetics. The CNO electrode delivers a reversible specific capacity of 65.3 and 52.2 mAh/g at 5 and 10 mA/g, respectively. Moreover, CNO exhibits excellent long-term cyclability with 92.53% capacity retention over 700 cycles at 10 mA/g. This will trigger more investigations into open-framework-based materials for stable and fast KIBs.
  • 加载中
    1. [1]

      An, W.; Gao, B.; Mei, S.; Xiang, B.; Fu, J.; Wang, L.; Zhang, Q.; Chu, P. K.; Huo, K. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 2019, 10, 1447−1458.  doi: 10.1038/s41467-019-09510-5

    2. [2]

      Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119−16125.  doi: 10.1038/nenergy.2016.119

    3. [3]

      Li, D.; Zhang, Y.; Sun, Q.; Zhang, S.; Wang, Z.; Liang, Z.; Si, P.; Ci, L. Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy Storage Mater. 2019, 23, 367−374.  doi: 10.1016/j.ensm.2019.04.037

    4. [4]

      Wang, W.; Bao, J. Z.; Sun, C. F. Liquid-phase exfoliated WS2-graphene composite anodes for potassium-ion batteries. Chin. J. Struct. Chem. 2020, 39, 493−499.

    5. [5]

      Zhang, Q.; Wang, Z. J.; Zhang, S. L.; Zhou, T. F.; Mao, J. F.; Guo, Z. P. Cathode materials for potassium-ion batteries: current status and perspective. Electrochem. Energy Rev. 2018, 1, 625−658.  doi: 10.1007/s41918-018-0023-y

    6. [6]

      Xue, L.; Li, Y.; Gao, H.; Zhou, W.; Lu, X.; Kaveevivitchai, W.; Manthiram, A.; Goodenough, J. B. Low-cost high-energy potassium cathode. J. Am. Chem. Soc. 2017, 139, 2164−2167.  doi: 10.1021/jacs.6b12598

    7. [7]

      He, G.; Nazar, L. F. Crystallite size control of prussian white analogues for nonaqueous potassium-ion batteries. ACS Energy Lett. 2017, 2, 1122−1127.  doi: 10.1021/acsenergylett.7b00179

    8. [8]

      Hosaka, T.; Kubota, K.; Kojima, H.; Komaba, S. Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries. Chem. Commun. 2018, 54, 8387−8390.  doi: 10.1039/C8CC04433C

    9. [9]

      Chihara, K.; Katogi, A.; Kubota, K.; Komaba, S. KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. Chem. Commun. 2017, 53, 5208−5211.  doi: 10.1039/C6CC10280H

    10. [10]

      Park, W. B.; Han, S. C.; Park, C.; Hong, S. U.; Han, U.; Singh, S. P.; Jung, Y. H.; Ahn, D.; Sohn, K. S.; Pyo, M. KVP2O7 as a robust high-energy cathode for potassium-ion batteries: pinpointed by a full screening of the inorganic registry under specific search conditions. Adv. Energy Mater. 2018, 8, 1703099−1703111.  doi: 10.1002/aenm.201703099

    11. [11]

      Han, J.; Xu, M.; Niu, Y.; Li, G. N.; Wang, M.; Zhang, Y.; Jia, M.; Li, C. M. Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. Chem. Commun. 2016, 52, 11274−11276.  doi: 10.1039/C6CC05102B

    12. [12]

      Han, J.; Niu, Y.; Bao, S. J.; Yu, Y. N.; Lu, S. Y.; Xu, M. Nanocubic KTi2(PO4)3 electrodes for potassium-ion batteries. Chem. Commun. 2016, 52, 11661−11664.  doi: 10.1039/C6CC06177J

    13. [13]

      Zhang, R.; Huang, J.; Deng, W.; Bao, J.; Pan, Y.; Huang, S.; Sun, C. F. Safe, low-cost, fast-kinetics and low-strain inorganic-open-framework anode for potassium-ion batteries. Angew. Chem. Int. Ed. 2019, 58, 16474−16479.  doi: 10.1002/anie.201909202

    14. [14]

      Zhang, R.; Bao, J.; Pan, Y.; Sun, C. F. Highly reversible potassium-ion intercalation in tungsten disulfide. Chem. Sci. 2019, 10, 2604−2612.  doi: 10.1039/C8SC04350G

    15. [15]

      Zhao, J.; Zou, X.; Zhu, Y.; Xu, Y.; Wang, C. Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 2016, 26, 8103−8110.  doi: 10.1002/adfm.201602248

    16. [16]

      Zhao, S.; Dong, L.; Sun, B.; Yan, K.; Zhang, J.; Wan, S.; He, F.; Munroe, P.; Notten, P. H. L.; Wang, G. K2Ti2O5@C microspheres with enhanced K+ intercalation pseudocapacitance ensuring fast potassium storage and long-term cycling stability. Small 2020, 16, 1906131−1906141.  doi: 10.1002/smll.201906131

    17. [17]

      Lian, P.; Dong, Y.; Wu, Z. S.; Zheng, S.; Wang, X.; Sen, W.; Sun, C.; Qin, J.; Shi, X.; Bao, X. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 2017, 40, 1−8.  doi: 10.1016/j.nanoen.2017.08.002

    18. [18]

      Li, L.; Zhang, W.; Wang, X.; Zhang, S.; Liu, Y.; Li, M.; Zhu, G.; Zheng, Y.; Zhang, Q.; Zhou, T.; Pang, W. K.; Luo, W.; Guo, Z.; Yang, J. Hollow-carbon-templated few-layered V5S8 nanosheets enabling ultrafast potassium storage and long-term cycling. ACS Nano 2019, 13, 7939−7948.  doi: 10.1021/acsnano.9b02384

    19. [19]

      Jia, B.; Yu, Q.; Zhao, Y.; Qin, M.; Wang, W.; Liu, Z.; Lao, C. Y.; Liu, Y.; Wu, H.; Zhang, Z.; Qu, X. Bamboo-like hollow tubes with MoS2/N-doped-C interfaces boost potassium-ion storage. Adv. Funct. Mater. 2018, 28, 1803409−1803418.  doi: 10.1002/adfm.201803409

    20. [20]

      Yang, L.; Hong, W.; Zhang, Y.; Tian, Y.; Gao, X.; Zhu, Y.; Zou, G.; Hou, H.; Ji, X. Hierarchical NiS2 modified with bifunctional carbon for enhanced ootassium-ion storage. Adv. Funct. Mater. 2019, 29, 1903454−1903467.  doi: 10.1002/adfm.201903454

    21. [21]

      Yao, Q.; Zhang, J.; Li, J.; Huang, W.; Hou, K.; Zhao, Y.; Guan, L. Yolk-shell NiSx@C nanosheets as K-ion battery anodes with high rate capability and ultralong cycle life. J. Mater. Chem. A 2019, 7, 18932−18939.  doi: 10.1039/C9TA06292K

    22. [22]

      Tai, Z.; Zhang, Q.; Liu, Y.; Liu, H.; Dou, S. Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon 2017, 123, 54−61.  doi: 10.1016/j.carbon.2017.07.041

    23. [23]

      Adams, R. A.; Varma, A.; Pol, V. G. Temperature dependent electrochemical performance of graphite anodes for K-ion and Li-ion batteries. J. Power Sources 2019, 410−411, 124−131.

    24. [24]

      Wu, Q.; Shao, Q.; Li, Q.; Duan, Q.; Li, Y.; Wang, H. G. Dual carbon-confined SnO2 hollow nanospheres enabling high performance for the reversible storage of alkali metal ions. ACS Appl. Mater. Interfaces 2018, 10, 15642−15651.  doi: 10.1021/acsami.8b00605

    25. [25]

      Park, M.; Zhang, X.; Chung, M.; Less, G. B.; Sastry, A. M. A review of conduction phenomena in Li-ion batteries. J. Power Sources 2010, 195, 7904−7929.  doi: 10.1016/j.jpowsour.2010.06.060

  • 加载中
    1. [1]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    2. [2]

      Tengfei YangJingshuai XiaoXiao SunYan SongChaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691

    3. [3]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    4. [4]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    5. [5]

      Lu ChengJinghua QuanHongyan Li . Recent advances in antimony-based anode materials for potassium-ion batteries: Material selection, structural design and storage mechanisms. Chinese Chemical Letters, 2025, 36(9): 110685-. doi: 10.1016/j.cclet.2024.110685

    6. [6]

      Wenfeng ShaoChuanlin LiChenggang WangGuangsen DuShunshun ZhaoGuangmeng QuYupeng XingTianshuo GuoHongfei LiXijin Xu . Stabilization of zinc anode by trace organic corrosion inhibitors for long lifespan. Chinese Chemical Letters, 2025, 36(3): 109531-. doi: 10.1016/j.cclet.2024.109531

    7. [7]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    8. [8]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    9. [9]

      Qiao WangZiling JiangChuang YuLiping LiGuangshe Li . Research progress of inorganic sodium ion conductors for solid-state batteries. Chinese Chemical Letters, 2025, 36(6): 110006-. doi: 10.1016/j.cclet.2024.110006

    10. [10]

      Zhuangzhuang ZhangYaru QiaoJun ZhaoDai-Huo LiuMengmin JiaHongwei TangLiang WangDongmei DaiBao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907

    11. [11]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    12. [12]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    13. [13]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    14. [14]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    15. [15]

      Yining LiShimei WuLantao ChenHaosen FanYufei ZhangLingxing Zeng . Multiple yolks-shell cobalt phosphosulfide nanocrystals encapsulating into rich heteroatoms co-doped carbon frameworks for advanced sodium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(9): 110371-. doi: 10.1016/j.cclet.2024.110371

    16. [16]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    17. [17]

      Liangbo ZhangJun ChengYahui ShiKunjie HouQi AnJingyi LiBaohui CuiFei Chen . Efficient removal of tetracycline hydrochloride by ZnO/HNTs composites under visible light: Kinetics, degradation pathways and mechanism. Chinese Chemical Letters, 2025, 36(7): 110400-. doi: 10.1016/j.cclet.2024.110400

    18. [18]

      Longjian LiPing ZhangYongchong YuReyila TuerhongXiaoping SuLijuan HanEnzhou LiuJizhou Jiang . Electron trap-induced charge accumulation and surface reaction kinetics synergistically enhance overall nitrogen photofixation. Chinese Chemical Letters, 2025, 36(8): 111118-. doi: 10.1016/j.cclet.2025.111118

    19. [19]

      Yongyi LiJin HanXiangyu WangZhenwei WeiIn-situ reaction monitoring and kinetics study of photochemical reactions by optical focusing inductive electrospray mass spectrometry. Chinese Chemical Letters, 2025, 36(9): 110708-. doi: 10.1016/j.cclet.2024.110708

    20. [20]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

Metrics
  • PDF Downloads(1)
  • Abstract views(614)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return