Citation: Zhan-Bing YANG, Su-Bing YANG, Xiao-Jian QU, Tamaki SHIBAYAMA, Seiichi WATANABE. Development of Laser-HVEM and Its Application on In-situ Observation on Lattice Defects Behavior[J]. Chinese Journal of Structural Chemistry, ;2020, 39(4): 623-629. doi: 10.14102/j.cnki.0254-5861.2011-2824 shu

Development of Laser-HVEM and Its Application on In-situ Observation on Lattice Defects Behavior

  • Corresponding author: Zhan-Bing YANG, yangzhanbing@ustb.edu.cn Seiichi WATANABE, sw004@eng.hokudai.ac.jp
  • Received Date: 15 March 2020
    Accepted Date: 3 April 2020

    Fund Project: the National Natural Science Foundation of China 51471027

Figures(4)

  • A nanosecond pulse laser source head (Nd: YAG laser, Inlite Ⅱ-20, Continuum) was equipped to a high-voltage electron microscope (HVEM, Hitachi, H-1300) to develop a laser-HVEM system at Hokkaido University. Using the laser-HVEM, new methods for in-situ observation on the formation process of laser-induced lattice point defects at the internal of crystalline solid are achieved; some striking phenomena and potential mechanisms are explored. In the present paper, we review our progresses on in-situ experiments of lattice defects behavior in metal using the laser-HVEM. These progresses are expected to provide insight for a broader application of laser-HVEM in scientific research.
  • 加载中
    1. [1]

      Kiritani, M.; Yoshida, N.; Takata, H.; Maehara, Y. Growth of interstitial type dislocation loops and vacancy mobility in electron-irradiated metals. J. Phys. Soc. Jpn. 1975, 38, 1677–1686.  doi: 10.1143/JPSJ.38.1677

    2. [2]

      Makin, M.; Sharp, J. An introduction to high-voltage electron microscopy. J. Mater Sci. 1968, 3 360–371.  doi: 10.1007/BF00550979

    3. [3]

      Foreman, A.; Makin, M. Effect of vacancy loops on swelling of irradiated materials. J. Nucl. Mater. 1979, 79, 43–57.  doi: 10.1016/0022-3115(79)90432-X

    4. [4]

      Zinkle, S.; Was, G. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758.  doi: 10.1016/j.actamat.2012.11.004

    5. [5]

      Sakaguchi, N.; Watanabe, S.; Takahashi, H. Heterogeneous dislocation formation and solute redistribution near grain boundaries in austenitic stainless steel under electron irradiation. Acta Mater. 2001, 49, 1129–1137.  doi: 10.1016/S1359-6454(01)00031-3

    6. [6]

      Zhang, Z.; Liu, C.; Wang, X.; Miller, M.; Ma, D.; Chen, G.; Williams, J.; Chin, B. Effects of proton irradiation on nanocluster precipitation in ferritic steel containing fcc alloying additions. Acta Mater. 2012, 60, 3034–3046.  doi: 10.1016/j.actamat.2012.02.008

    7. [7]

      Nishiyama, Y.; Onizawa, K.; Suzuki, M.; Anderegg, J.; Nagai, Y.; Toyama, T.; Hasegawa, M.; Kameda, J. Effects of neutron-irradiation-induced intergranular phosphorus segregation and hardening on embrittlement in reactor pressure vessel steels. Acta Mater. 2008, 56, 4510–4521.  doi: 10.1016/j.actamat.2008.05.026

    8. [8]

      Kiritani, M.; Takata, H. Dynamic studies of defect mobility using high-voltage electron-microscopy. J. Nucl. Mater. 1978, 69–70, 277–309.

    9. [9]

      Taylor, A.; Wallace, J.; Ryan, E.; Philippides, A.; Wrobel, J. In-situ implantation system in argonne-national-laboratory hvem-tandem facility. Nucl. Instrum. Methods Phys. Res. 1981, 189, 211–217.  doi: 10.1016/0029-554X(81)90148-8

    10. [10]

      Takeyama, T.; Ohnuki, S.; Takahashi, H. Study of cavity formation in 316-stainless steels by means of hvem ion-accelerator dual irradiation. J. Nucl. Mater. 1985, 133, 571–574.

    11. [11]

      Furuya, K.; Mitsuishi, K.; Song, M.; Saito, T. In-situ, analytical, high-voltage and high-resolution transmission electron microscopy of Xe ion implantation into Al. J. Electron Microsc. 1999, 48, 511–518.  doi: 10.1093/oxfordjournals.jmicro.a023709

    12. [12]

      Delarubia, T.; Guinan, M. Progress in the development of a molecular-dynamics code for high-energy cascade studies. J. Nucl. Mater. 1990, 174, 151–157.  doi: 10.1016/0022-3115(90)90229-G

    13. [13]

      Kino, T.; Koehler, J. Vacancies and divacancies in quenched gold. Phys. Rev. 1967, 162, 632–648.  doi: 10.1103/PhysRev.162.632

    14. [14]

      Majumdar, J.; Galun, R.; Mordike, B.; Manna, I. Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy. Mater. Sci. Eng. A 2003, 361, 119–129.  doi: 10.1016/S0921-5093(03)00519-7

    15. [15]

      Watanabe, S.; Yoshida, Y.; Kayashi, S.; Yatsu, S. In-situ observation of self-organizing nanodot formation under nanosecond-pulsed laser irradiation on Si surface. J. Appl. Phys. 2010, 108, 103510.  doi: 10.1063/1.3512888

    16. [16]

      Yang, Z.; Sakaguchi, N.; Watanabe, S.; Kawai, M. Dislocation loop formation and growth under in-situ laser and/or electron irradiation. Sci. Rep. UK. 2011, 1, 190.  doi: 10.1038/srep00190

    17. [17]

      Yang, Z.; Watanabe, S.; Kato, T. The irradiation effect of a simultaneous laser and electron dual-beam on void formation. Sci. Rep. UK. 2013, 3, 1201.  doi: 10.1038/srep01201

    18. [18]

      Yang, S.; Yang, Z.; Wang, H.; Watanabe, S.; Shibayama, T. Effect of laser and/or electron irradiation on void swelling in SUS316L austenitic stainless steel. J. Nucl. Mater. 2017, 488, 215–221.  doi: 10.1016/j.jnucmat.2017.03.002

    19. [19]

      Qu, X.; Yang, Z.; Yang, S. Effect of pulsed laser irradiation on the coincidence site lattice grain boundary of 316L stainless steel. Surf. Technol. 2019, 48, 201–208.

    20. [20]

      Yang, Z.; Watanabe, S. Dislocation loop foramtion under various irradiations of laser and/or electron beams. Acta Mater. 2013, 61, 2966–2972.  doi: 10.1016/j.actamat.2013.01.056

    21. [21]

      Davis, T.; Hirth, J. Nucleation rate of vacancy clusters in crystals. J. Appl. Phys. 1966, 37, 2112–2116.  doi: 10.1063/1.1708745

    22. [22]

      Davis, T. Nucleation rate of vacancy clusters in aluminum. J. Appl. Phys. 1967, 38, 3756–3760.  doi: 10.1063/1.1710206

    23. [23]

      Hidaka, Y.; Ohnuki, S.; Takahashi, H.; Watanabe, S. Effect of He on void formation and radiation-induced segregation in dual-beam irradiated Fe-Cr-Ni. J. Nucl. Mater. 1994, 212, 330–335.

    24. [24]

      Pokor, C.; Brechet, Y.; Dubuisson, P.; Massoud, J. Irradiation damage in 304 and 316 stainless steels: experimental investigation and modeling. Part Ⅰ: evolution of the microstructure. J. Nucl. Mater. 2004, 326, 19–29.  doi: 10.1016/j.jnucmat.2003.11.007

    25. [25]

      Yvon, P.; Carré, F. Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 2009, 385, 217–222.  doi: 10.1016/j.jnucmat.2008.11.026

    26. [26]

      Azevedo, C. Selection of fuel cladding material for nuclear fission reactors. Eng. Fall. Anal. 2011, 18, 1943–1962.  doi: 10.1016/j.engfailanal.2011.06.010

    27. [27]

      Yoshiie, T.; Cao, X.; Sato, K.; Miyawaki, K.; Xu, Q. Point defect processes during incubation period of void growth in austenitic stainless steels, Ti-modified 316SS, J. Nucl. Mater. 2011, 417, 968–971.  doi: 10.1016/j.jnucmat.2010.12.189

    28. [28]

      Sekio, Y.; Yamashita, S.; Sakaguchi, N.; Takahashi, H. Effect of additional minor elements on accumulation behavior of point defects under electron irradiation in austenitic stainless steels. Mater. Trans. 2014, 55, 438–442.  doi: 10.2320/matertrans.MD201309

    29. [29]

      Yang, S.; Yang, Z.; Wang, H. Effect of pulsed-laser and/or electron irradiation on vacancy diffusion in SUS316L austenitic stainless steel. Chin. J. Eng. 2017, 39, 903–908.

    30. [30]

      Michiuchi, M.; Kokawa, H.; Wang, Z.; Sato, Y.; Sakai, K. Twin-induced grain boundary engineering for 316 austenitic stainless steel. Acta Mater. 2006, 54, 5179–5184.  doi: 10.1016/j.actamat.2006.06.030

    31. [31]

      Mahajan, S.; Pande, C.; Imam, A.; Rath, B. Formation of annealing twins in fcc crystals. Acta Mater. 1997, 45, 2633–2638.  doi: 10.1016/S1359-6454(96)00336-9

    32. [32]

      Yoshida, Y.; Watanabe, S.; Nishijima, Y.; Ueno, K.; Misawa, H.; Kato, K. Fabrication of a Au/Si nanocomposite structure by nanosecond pulsed laser irradiation. Nanotechnology 2011, 22, 375607.  doi: 10.1088/0957-4484/22/37/375607

    33. [33]

      Yoshida, Y.; Yatsu, S.; Watanabe, S.; Yamauchi, A.; Shibano, J. Transformation in iron-platinum thin film via nanosecond pulsed laser irradiation. J. Phys. Chem. Sol. 2017, 109, 46-49.  doi: 10.1016/j.jpcs.2017.05.013

    34. [34]

      Lei, Y. H.; Yu, R. X.; Shibayama, T.; Ishioka, J.; Watanabe, S. In-situ observation of self-assembly of quasi-two-dimensional Au nano-submicron particles on β-SiC substrates via nanosecond-pulsed laser irradiation-induced dewetting of thin Au films. Mater. Lett. 2016, 164, 202–205.  doi: 10.1016/j.matlet.2015.11.004

  • 加载中
    1. [1]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    2. [2]

      Bin FengTao LongRuotong LiYuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273

    3. [3]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    4. [4]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    5. [5]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    6. [6]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    7. [7]

      Na LiWenxue WangPeng WangZhanying SunXinlong TianXiaodong Shi . Dual-defect engineering of catalytic cathode materials for advanced lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110731-. doi: 10.1016/j.cclet.2024.110731

    8. [8]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    9. [9]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    10. [10]

      Lingjiang KouYong WangJiajia SongTaotao AiWenhu LiMohammad Yeganeh GhotbiPanya WattanapaphawongKoji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368

    11. [11]

      Haining PengHuijun LiuChengzong LiYingfu LiQizhi ChenTao Li . Diluent modified weakly solvating electrolyte for fast-charging high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 109556-. doi: 10.1016/j.cclet.2024.109556

    12. [12]

      Zhen-Zhen DongJin-Hao ZhangLin ZhuXiao-Zhong FanZhen-Guo LiuYi-Bo YanLong Kong . Attenuating reductive decomposition of fluorinated electrolytes for high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(4): 109773-. doi: 10.1016/j.cclet.2024.109773

    13. [13]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    14. [14]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    15. [15]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    16. [16]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    17. [17]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    18. [18]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    19. [19]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    20. [20]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

Metrics
  • PDF Downloads(2)
  • Abstract views(312)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return