EQCM for In-depth Study of Metal Anodes for Electrochemical Energy Storage
- Corresponding author: Feng PAN, panfeng@pkusz.edu.cn Qin Run-Zhi and Wang Yan contribute equally to this work
Citation:
Run-Zhi QIN, Yan WANG, Qing-He ZHAO, Kai YANG, Feng PAN. EQCM for In-depth Study of Metal Anodes for Electrochemical Energy Storage[J]. Chinese Journal of Structural Chemistry,
;2020, 39(4): 605-614.
doi:
10.14102/j.cnki.0254-5861.2011-2819
Sauerbrey, G. Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Z. Physik. 1959, 155, 206–222.
doi: 10.1007/BF01337937
Kanazawa, K. K.; Gordon, J. G. The oscillation frequency of a quartz resonator in contact with liquid. Anal. Chim. Acta 1985, 175, 99–105.
doi: 10.1016/S0003-2670(00)82721-X
Grey, C. P.; Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 2017, 16, 45–56.
doi: 10.1038/nmat4777
Wang, D. H.; Tang, X.; Qiu, Y. Y.; Gan, F. X.; Chen, G. Z. A study of the film formation kinetics on zinc in different acidic corrosion inhibitor solutions by quartz crystal microbalance. Corros. Sci. 2005, 47, 2157–2172.
doi: 10.1016/j.corsci.2004.10.003
Frydendal, R.; Paoli, E. A.; Knudsen, B. P.; Wickman, B.; Malacrida, P.; Stephens, I. E. L.; Chorkendorff, I. Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring·mass losses. Chemelectrochem 2014, 1, 2075–2081.
doi: 10.1002/celc.201402262
Zhao, Q.; Yang, J.; Liu, M.; Wang, R.; Zhang, G.; Wang, H.; Tang, H.; Liu, C.; Mei, Z.; Chen, H.; Pan, F. Tuning electronic push/pull of Ni-based hydroxides to enhance hydrogen and oxygen evolution reactions for water splitting. ACS Catal. 2018, 8, 5621–5629.
doi: 10.1021/acscatal.8b01567
Liu, T.; Lin, L.; Bi, X.; Tian, L.; Yang, K.; Liu, J.; Li, M.; Chen, Z.; Lu, J.; Amine, K.; Xu, K.; Pan, F. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol. 2019, 14, 50–56.
doi: 10.1038/s41565-018-0284-y
Yin, Z. W.; Peng, X. X.; Li, J. T.; Shen, C. H.; Deng, Y. P.; Wu, Z. G.; Zhang, T.; Zhang, Q. B.; Mo, Y. X.; Wang, K.; Huang, L.; Zheng, H.; Sun, S. G. Revealing of the activation pathway and cathode electrolyte interphase evolution of Li-rich 0.5Li2MnO3·0.5LiNi0.3Co0.3Mn0.4O2 cathode by in situ electrochemical quartz crystal microbalance. ACS Appl. Mater. Interfaces 2019, 11, 16214–16222.
doi: 10.1021/acsami.9b02236
Liu, M.; Zhao, Q.; Liu, H.; Yang, J.; Chen, X.; Yang, L.; Cui, Y.; Huang, W.; Zhao, W.; Song, A.; Wang, Y.; Ding, S.; Song, Y.; Qian, G.; Chen, H.; Pan, F. Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. Nano Energy 2019, 64, 103942.
doi: 10.1016/j.nanoen.2019.103942
Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.
doi: 10.1038/nnano.2017.16
Mo, Y. B.; Gofer, Y.; Hwang, E. J.; Wang, Z. H.; Scherson, D. A. Simultaneous microgravimetric and optical reflectivity studies of lithium underpotential deposition on Au(111) from propylene carbonate electrolytes. J. Electroanal. Chem. 1996, 409, 87–93.
doi: 10.1016/0022-0728(96)04633-5
Naoi, K.; Mori, M.; Shinagawa, Y. Study of deposition and dissolution processes of lithium in carbonate-based solutions by means of the quartz-crystal microbalance. J. Electrochem. Soc. 1996, 143, 2517–2522.
doi: 10.1149/1.1837040
Aurbach, D.; Moshkovich, M. A study of lithium deposition-dissolution processes in a few selected electrolyte solutions by electrochemical quartz crystal microbalance. J. Electrochem. Soc. 1998, 145, 2629–2639.
doi: 10.1149/1.1838692
Aurbach, D.; Moshkovich, M.; Cohen, Y.; Schechter, A. The study of surface film formation on noble-metal electrodes in alkyl carbonates/Li salt solutions, using simultaneous in situ AFM, EQCM, FTIR, and EIS. Langmuir. 1999, 15, 2947–2960.
doi: 10.1021/la981275j
Smaran, K. S.; Shibata, S.; Omachi, A.; Ohama, A.; Tomizawa, E.; Kondo, T. Anion-dependent potential precycling effects on lithium deposition/dissolution reaction studied by an electrochemical quartz crystal microbalance. J. Phys. Chem. Lett. 2017, 8, 5203–5208.
doi: 10.1021/acs.jpclett.7b02312
Zeng, W.; Cheng, M. M. C.; Ng, S. K. Y. Effects of transition metal cation additives on the passivation of lithium metal anode in Li-S batteries. Electrochim. Acta 2019, 319, 511–517.
doi: 10.1016/j.electacta.2019.06.177
Park, S. H.; Winnick, J.; Kohl, P. A. Investigation of the lithium couple on Pt, Al, and Hg electrodes in lithium imide-ethyl methyl sulfone. J. Electrochem. Soc. 2002, 149, A1196–A1200.
doi: 10.1149/1.1497979
Tavassol, H.; Buthker, J. W.; Ferguson, G. A.; Curtiss, L. A.; Gewirth, A. A. Solvent oligomerization during SEI formation on model systems for Li-ion battery anodes. J. Electrochem. Soc. 2012, 159, A730–A738.
doi: 10.1149/2.067206jes
Naoi, K.; Mori, M.; Naruoka, Y.; Lamanna, W. M.; Atanasoski, R. The surface film formed on a lithium metal electrode in a new imide electrolyte, lithium bis(perfluoroethylsulfonylimide) [LiN(C2F5SO2)2]. J. Electrochem. Soc. 1999, 146, 462–469.
doi: 10.1149/1.1391629
Serizawa, N.; Seki, S.; Takei, K.; Miyashiro, H.; Yoshida, K.; Ueno, K.; Tachikawa, N.; Dokko, K.; Katayama, Y.; Watanabe, M.; Miura, T. EQCM measurement of deposition and dissolution of lithium in glyme-Li salt molten complex. J. Electrochem. Soc. 2013, 160, A1529–A1533.
doi: 10.1149/2.085309jes
Matsumoto, H.; Tsuzuki, S.; Kubota, K. Lithium Redox in Imidazolium Ionic Liquids Composed of Five-membered Cyclic Amide in 17th International Meeting on Lithium Batteries. Fergus, J. W. Editor 2014, 223–230.
Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C. Y.; Fei, B.; Pan, F. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 2020, 70, 104523.
doi: 10.1016/j.nanoen.2020.104523
Zhao, Q.; Chen, X.; Wang, Z.; Yang, L.; Qin, R.; Yang, J.; Song, Y.; Ding, S.; Weng, M.; Huang, W.; Liu, J.; Zhao, W.; Qian, G.; Yang, K.; Cui, Y.; Chen, H.; Pan, F. Unravelling H+/Zn2+ synergistic intercalation in a novel phase of manganese oxide for high-performance aqueous rechargeable battery. Small. 2019, 15, 1904545.
doi: 10.1002/smll.201904545
Agrisuelas, J.; Garcia-Jareno, J. J.; Gimenez-Romero, D.; Vicente, F. An electromechanical perspective on the metal/solution interfacial region during the metallic zinc electrodeposition. Electrochim. Acta 2009, 54, 6046–6052.
doi: 10.1016/j.electacta.2009.03.062
Gimenez-Romero, D.; Garcia-Jareno, J. J.; Vicente, F. EQCM and EIS studies of Znaq2+ + 2e- ⇄ Zn0 electrochemical reaction in moderated acid medium. J. Electroanal. Chem. 2003, 558, 25–33.
doi: 10.1016/S0022-0728(03)00373-5
Hwang, B.; Oh, E. S.; Kim, K. Observation of electrochemical reactions at Zn electrodes in Zn-air secondary batteries. Electrochim. Acta 2016, 216, 484–489.
doi: 10.1016/j.electacta.2016.09.056
Cai, Z.; Ou, Y.; Wang, J.; Xiao, R.; Fu, L.; Yuan, Z.; Zhan, R.; Sun, Y. Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Materials 2020, 27, 205–211.
doi: 10.1016/j.ensm.2020.01.032
Wittman, R. M.; Sacci, R. L.; Zawodzinski, T. A. Elucidating·mechanisms of oxide growth and surface passivation on zinc thin film electrodes in alkaline solutions using the electrochemical quartz crystal microbalance. J. Power Sources 2019, 438, 227034.
doi: 10.1016/j.jpowsour.2019.227034
Liu, M.; Yang, L.; Liu, H.; Amine, A.; Zhao, Q.; Song, Y.; Yang, J.; Wang, K.; Pan, F. Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect. ACS Appl. Mater. Interfaces 2019, 11, 32046–32051.
doi: 10.1021/acsami.9b11243
Wang, Z.; Hu, J.; Han, L.; Wang, Z.; Wang, H.; Zhao, Q.; Liu, J.; Pan, F. A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy 2019, 56, 92–99.
doi: 10.1016/j.nanoen.2018.11.038
Miyazaki, K.; Nakata, A.; Lee, Y. S.; Fukutsuka, T.; Abe, T. Influence of surfactants as additives to electrolyte solutions on zinc electrodeposition and potential oscillation behavior. J. Appl. Electrochem. 2016, 46, 1067–1073.
doi: 10.1007/s10800-016-0987-4
Ballesteros, J. C.; Diaz-Arista, P.; Meas, Y.; Ortega, R.; Trejo, G. Zinc electrodeposition in the presence of polyethylene glycol 20000. Electrochim. Acta 2007, 52, 3686–3696.
doi: 10.1016/j.electacta.2006.10.042
Mitha, A.; Yazdi, A. Z.; Ahmed, M.; Chen, P. Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries. Chemelectrochem. 2018, 5, 2409–2418.
doi: 10.1002/celc.201800572
Trejo, G.; Ruiz, H.; Borges, R. O.; Meas, Y. Influence of polyethoxylated additives on zinc electrodeposition from acidic solutions. J. Appl. Electrochem. 2001, 31, 685–692.
doi: 10.1023/A:1017580025961
Moron, L. E.; Mendez, A.; Ballesteros, J. C.; Antano-Lopez, R.; Orozco, G.; Meas, Y.; Ortega-Borges, R.; Trejo, G. Zn electrodeposition from an acidic chloride bath containing polyethyleneglycol (Mw 200) and benzylideneacetone as additives. J. Electrochem. Soc. 2011, 158, D435–D444.
doi: 10.1149/1.3591058
Song, K. D.; Kim, K. B.; Han, S. H.; Lee, H. Effect of additives on hydrogen evolution and absorption during Zn electrodeposition investigated by EQCM. Electrochem. Solid St. 2004, 7, C20–C24.
doi: 10.1149/1.1635091
Alesary, H. F.; Cihangir, S.; Ballantyne, A. D.; Harris, R. C.; Weston, D. P.; Abbott, A. P.; Ryder, K. S. Influence of additives on the electrodeposition of zinc from a deep eutectic solvent. Electrochim. Acta 2019, 304, 118–130.
doi: 10.1016/j.electacta.2019.02.090
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
Hangwen Zheng , Ziqian Wang , HuiJie Zhang , Jing Lei , Rihui Li , Jian Yang , Haiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Ming ZHENG , Yixiao ZHANG , Jian YANG , Pengfei GUAN , Xiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388
Wenfeng Shao , Chuanlin Li , Chenggang Wang , Guangsen Du , Shunshun Zhao , Guangmeng Qu , Yupeng Xing , Tianshuo Guo , Hongfei Li , Xijin Xu . Stabilization of zinc anode by trace organic corrosion inhibitors for long lifespan. Chinese Chemical Letters, 2025, 36(3): 109531-. doi: 10.1016/j.cclet.2024.109531
Ting Hu , Yuxuan Guo , Yixuan Meng , Ze Zhang , Ji Yu , Jianxin Cai , Zhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603
Tao Wei , Jiahao Lu , Pan Zhang , Qi Zhang , Guang Yang , Ruizhi Yang , Daifen Chen , Qian Wang , Yongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122
Jiale Zheng , Mei Chen , Huadong Yuan , Jianmin Luo , Yao Wang , Jianwei Nai , Xinyong Tao , Yujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Chengmin Hu , Pingxuan Liu , Ziyang Song , Yaokang Lv , Hui Duan , Li Xie , Ling Miao , Mingxian Liu , Lihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
Ningning Zhao , Yuyan Liang , Wenjie Huo , Xinyan Zhu , Zhangxing He , Zekun Zhang , Youtuo Zhang , Xianwen Wu , Lei Dai , Jing Zhu , Ling Wang , Qiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332
Jun Jiang , Tong Guo , Wuxin Bai , Mingliang Liu , Shujun Liu , Zhijie Qi , Jingwen Sun , Shugang Pan , Aleksandr L. Vasiliev , Zhiyuan Ma , Xin Wang , Junwu Zhu , Yongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Xianping Du , Ying Huang , Chen Chen , Zhenhe Feng , Meng Zong . Encapsulating Si particles in multiple carbon shells with pore-rich for constructing free-standing anodes of lithium storage. Chinese Chemical Letters, 2024, 35(12): 109990-. doi: 10.1016/j.cclet.2024.109990
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199