Citation: Run-Zhi QIN, Yan WANG, Qing-He ZHAO, Kai YANG, Feng PAN. EQCM for In-depth Study of Metal Anodes for Electrochemical Energy Storage[J]. Chinese Journal of Structural Chemistry, ;2020, 39(4): 605-614. doi: 10.14102/j.cnki.0254-5861.2011-2819 shu

EQCM for In-depth Study of Metal Anodes for Electrochemical Energy Storage

  • Corresponding author: Feng PAN, panfeng@pkusz.edu.cn
  • Qin Run-Zhi and Wang Yan contribute equally to this work
  • Received Date: 12 March 2020
    Accepted Date: 27 March 2020

    Fund Project: financially supported by Soft Science Research Project of Guangdong Province 2017B030301013

Figures(5)

  • Electrochemical quartz crystal microbalance (EQCM) is a powerful tool to study the mass change and charge transfer during electrochemical process. The mass change on the electrode surface can be monitored with high precision and high sensitivity, making it possible to analyze the in-depth mechanism of electrode reactions. The application of metal anodes has exhibited great potential for the future energy storage devices for the elevated capacity. Herein, we review the research progress utilizing EQCM for metal anodes, including the deposition/dissolution process, the side reactions, the effect of additives, etc. Furthermore, we also put forward a perspective on research of the mechanism and performance improvement of metal anodes.
  • 加载中
    1. [1]

      Sauerbrey, G. Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Z. Physik. 1959, 155, 206–222.  doi: 10.1007/BF01337937

    2. [2]

      Kanazawa, K. K.; Gordon, J. G. The oscillation frequency of a quartz resonator in contact with liquid. Anal. Chim. Acta 1985, 175, 99–105.  doi: 10.1016/S0003-2670(00)82721-X

    3. [3]

      Grey, C. P.; Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 2017, 16, 45–56.  doi: 10.1038/nmat4777

    4. [4]

      Wang, D. H.; Tang, X.; Qiu, Y. Y.; Gan, F. X.; Chen, G. Z. A study of the film formation kinetics on zinc in different acidic corrosion inhibitor solutions by quartz crystal microbalance. Corros. Sci. 2005, 47, 2157–2172.  doi: 10.1016/j.corsci.2004.10.003

    5. [5]

      Frydendal, R.; Paoli, E. A.; Knudsen, B. P.; Wickman, B.; Malacrida, P.; Stephens, I. E. L.; Chorkendorff, I. Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring·mass losses. Chemelectrochem 2014, 1, 2075–2081.  doi: 10.1002/celc.201402262

    6. [6]

      Zhao, Q.; Yang, J.; Liu, M.; Wang, R.; Zhang, G.; Wang, H.; Tang, H.; Liu, C.; Mei, Z.; Chen, H.; Pan, F. Tuning electronic push/pull of Ni-based hydroxides to enhance hydrogen and oxygen evolution reactions for water splitting. ACS Catal. 2018, 8, 5621–5629.  doi: 10.1021/acscatal.8b01567

    7. [7]

      Liu, T.; Lin, L.; Bi, X.; Tian, L.; Yang, K.; Liu, J.; Li, M.; Chen, Z.; Lu, J.; Amine, K.; Xu, K.; Pan, F. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol. 2019, 14, 50–56.  doi: 10.1038/s41565-018-0284-y

    8. [8]

      Yin, Z. W.; Peng, X. X.; Li, J. T.; Shen, C. H.; Deng, Y. P.; Wu, Z. G.; Zhang, T.; Zhang, Q. B.; Mo, Y. X.; Wang, K.; Huang, L.; Zheng, H.; Sun, S. G. Revealing of the activation pathway and cathode electrolyte interphase evolution of Li-rich 0.5Li2MnO3·0.5LiNi0.3Co0.3Mn0.4O2 cathode by in situ electrochemical quartz crystal microbalance. ACS Appl. Mater. Interfaces 2019, 11, 16214–16222.  doi: 10.1021/acsami.9b02236

    9. [9]

      Liu, M.; Zhao, Q.; Liu, H.; Yang, J.; Chen, X.; Yang, L.; Cui, Y.; Huang, W.; Zhao, W.; Song, A.; Wang, Y.; Ding, S.; Song, Y.; Qian, G.; Chen, H.; Pan, F. Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. Nano Energy 2019, 64, 103942.  doi: 10.1016/j.nanoen.2019.103942

    10. [10]

      Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.  doi: 10.1038/nnano.2017.16

    11. [11]

      Mo, Y. B.; Gofer, Y.; Hwang, E. J.; Wang, Z. H.; Scherson, D. A. Simultaneous microgravimetric and optical reflectivity studies of lithium underpotential deposition on Au(111) from propylene carbonate electrolytes. J. Electroanal. Chem. 1996, 409, 87–93.  doi: 10.1016/0022-0728(96)04633-5

    12. [12]

      Naoi, K.; Mori, M.; Shinagawa, Y. Study of deposition and dissolution processes of lithium in carbonate-based solutions by means of the quartz-crystal microbalance. J. Electrochem. Soc. 1996, 143, 2517–2522.  doi: 10.1149/1.1837040

    13. [13]

      Aurbach, D.; Moshkovich, M. A study of lithium deposition-dissolution processes in a few selected electrolyte solutions by electrochemical quartz crystal microbalance. J. Electrochem. Soc. 1998, 145, 2629–2639.  doi: 10.1149/1.1838692

    14. [14]

      Aurbach, D.; Moshkovich, M.; Cohen, Y.; Schechter, A. The study of surface film formation on noble-metal electrodes in alkyl carbonates/Li salt solutions, using simultaneous in situ AFM, EQCM, FTIR, and EIS. Langmuir. 1999, 15, 2947–2960.  doi: 10.1021/la981275j

    15. [15]

      Smaran, K. S.; Shibata, S.; Omachi, A.; Ohama, A.; Tomizawa, E.; Kondo, T. Anion-dependent potential precycling effects on lithium deposition/dissolution reaction studied by an electrochemical quartz crystal microbalance. J. Phys. Chem. Lett. 2017, 8, 5203–5208.  doi: 10.1021/acs.jpclett.7b02312

    16. [16]

      Zeng, W.; Cheng, M. M. C.; Ng, S. K. Y. Effects of transition metal cation additives on the passivation of lithium metal anode in Li-S batteries. Electrochim. Acta 2019, 319, 511–517.  doi: 10.1016/j.electacta.2019.06.177

    17. [17]

      Park, S. H.; Winnick, J.; Kohl, P. A. Investigation of the lithium couple on Pt, Al, and Hg electrodes in lithium imide-ethyl methyl sulfone. J. Electrochem. Soc. 2002, 149, A1196–A1200.  doi: 10.1149/1.1497979

    18. [18]

      Tavassol, H.; Buthker, J. W.; Ferguson, G. A.; Curtiss, L. A.; Gewirth, A. A. Solvent oligomerization during SEI formation on model systems for Li-ion battery anodes. J. Electrochem. Soc. 2012, 159, A730–A738.  doi: 10.1149/2.067206jes

    19. [19]

      Naoi, K.; Mori, M.; Naruoka, Y.; Lamanna, W. M.; Atanasoski, R. The surface film formed on a lithium metal electrode in a new imide electrolyte, lithium bis(perfluoroethylsulfonylimide) [LiN(C2F5SO2)2]. J. Electrochem. Soc. 1999, 146, 462–469.  doi: 10.1149/1.1391629

    20. [20]

      Serizawa, N.; Seki, S.; Takei, K.; Miyashiro, H.; Yoshida, K.; Ueno, K.; Tachikawa, N.; Dokko, K.; Katayama, Y.; Watanabe, M.; Miura, T. EQCM measurement of deposition and dissolution of lithium in glyme-Li salt molten complex. J. Electrochem. Soc. 2013, 160, A1529–A1533.  doi: 10.1149/2.085309jes

    21. [21]

      Matsumoto, H.; Tsuzuki, S.; Kubota, K. Lithium Redox in Imidazolium Ionic Liquids Composed of Five-membered Cyclic Amide in 17th International Meeting on Lithium Batteries. Fergus, J. W. Editor 2014, 223–230.

    22. [22]

      Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C. Y.; Fei, B.; Pan, F. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 2020, 70, 104523.  doi: 10.1016/j.nanoen.2020.104523

    23. [23]

      Zhao, Q.; Chen, X.; Wang, Z.; Yang, L.; Qin, R.; Yang, J.; Song, Y.; Ding, S.; Weng, M.; Huang, W.; Liu, J.; Zhao, W.; Qian, G.; Yang, K.; Cui, Y.; Chen, H.; Pan, F. Unravelling H+/Zn2+ synergistic intercalation in a novel phase of manganese oxide for high-performance aqueous rechargeable battery. Small. 2019, 15, 1904545.  doi: 10.1002/smll.201904545

    24. [24]

      Agrisuelas, J.; Garcia-Jareno, J. J.; Gimenez-Romero, D.; Vicente, F. An electromechanical perspective on the metal/solution interfacial region during the metallic zinc electrodeposition. Electrochim. Acta 2009, 54, 6046–6052.  doi: 10.1016/j.electacta.2009.03.062

    25. [25]

      Gimenez-Romero, D.; Garcia-Jareno, J. J.; Vicente, F. EQCM and EIS studies of Znaq2+ + 2e- ⇄ Zn0 electrochemical reaction in moderated acid medium. J. Electroanal. Chem. 2003, 558, 25–33.  doi: 10.1016/S0022-0728(03)00373-5

    26. [26]

      Hwang, B.; Oh, E. S.; Kim, K. Observation of electrochemical reactions at Zn electrodes in Zn-air secondary batteries. Electrochim. Acta 2016, 216, 484–489.  doi: 10.1016/j.electacta.2016.09.056

    27. [27]

      Cai, Z.; Ou, Y.; Wang, J.; Xiao, R.; Fu, L.; Yuan, Z.; Zhan, R.; Sun, Y. Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Materials 2020, 27, 205–211.  doi: 10.1016/j.ensm.2020.01.032

    28. [28]

      Wittman, R. M.; Sacci, R. L.; Zawodzinski, T. A. Elucidating·mechanisms of oxide growth and surface passivation on zinc thin film electrodes in alkaline solutions using the electrochemical quartz crystal microbalance. J. Power Sources 2019, 438, 227034.  doi: 10.1016/j.jpowsour.2019.227034

    29. [29]

      Liu, M.; Yang, L.; Liu, H.; Amine, A.; Zhao, Q.; Song, Y.; Yang, J.; Wang, K.; Pan, F. Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect. ACS Appl. Mater. Interfaces 2019, 11, 32046–32051.  doi: 10.1021/acsami.9b11243

    30. [30]

      Wang, Z.; Hu, J.; Han, L.; Wang, Z.; Wang, H.; Zhao, Q.; Liu, J.; Pan, F. A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy 2019, 56, 92–99.  doi: 10.1016/j.nanoen.2018.11.038

    31. [31]

      Miyazaki, K.; Nakata, A.; Lee, Y. S.; Fukutsuka, T.; Abe, T. Influence of surfactants as additives to electrolyte solutions on zinc electrodeposition and potential oscillation behavior. J. Appl. Electrochem. 2016, 46, 1067–1073.  doi: 10.1007/s10800-016-0987-4

    32. [32]

      Ballesteros, J. C.; Diaz-Arista, P.; Meas, Y.; Ortega, R.; Trejo, G. Zinc electrodeposition in the presence of polyethylene glycol 20000. Electrochim. Acta 2007, 52, 3686–3696.  doi: 10.1016/j.electacta.2006.10.042

    33. [33]

      Mitha, A.; Yazdi, A. Z.; Ahmed, M.; Chen, P. Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries. Chemelectrochem. 2018, 5, 2409–2418.  doi: 10.1002/celc.201800572

    34. [34]

      Trejo, G.; Ruiz, H.; Borges, R. O.; Meas, Y. Influence of polyethoxylated additives on zinc electrodeposition from acidic solutions. J. Appl. Electrochem. 2001, 31, 685–692.  doi: 10.1023/A:1017580025961

    35. [35]

      Moron, L. E.; Mendez, A.; Ballesteros, J. C.; Antano-Lopez, R.; Orozco, G.; Meas, Y.; Ortega-Borges, R.; Trejo, G. Zn electrodeposition from an acidic chloride bath containing polyethyleneglycol (Mw 200) and benzylideneacetone as additives. J. Electrochem. Soc. 2011, 158, D435–D444.  doi: 10.1149/1.3591058

    36. [36]

      Song, K. D.; Kim, K. B.; Han, S. H.; Lee, H. Effect of additives on hydrogen evolution and absorption during Zn electrodeposition investigated by EQCM. Electrochem. Solid St. 2004, 7, C20–C24.  doi: 10.1149/1.1635091

    37. [37]

      Alesary, H. F.; Cihangir, S.; Ballantyne, A. D.; Harris, R. C.; Weston, D. P.; Abbott, A. P.; Ryder, K. S. Influence of additives on the electrodeposition of zinc from a deep eutectic solvent. Electrochim. Acta 2019, 304, 118–130.  doi: 10.1016/j.electacta.2019.02.090

  • 加载中
    1. [1]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    2. [2]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    3. [3]

      Hangwen ZhengZiqian WangHuiJie ZhangJing LeiRihui LiJian YangHaiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    6. [6]

      Wenfeng ShaoChuanlin LiChenggang WangGuangsen DuShunshun ZhaoGuangmeng QuYupeng XingTianshuo GuoHongfei LiXijin Xu . Stabilization of zinc anode by trace organic corrosion inhibitors for long lifespan. Chinese Chemical Letters, 2025, 36(3): 109531-. doi: 10.1016/j.cclet.2024.109531

    7. [7]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    8. [8]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    9. [9]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    10. [10]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    11. [11]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    12. [12]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    13. [13]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    14. [14]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    15. [15]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    16. [16]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    17. [17]

      Xianping DuYing HuangChen ChenZhenhe FengMeng Zong . Encapsulating Si particles in multiple carbon shells with pore-rich for constructing free-standing anodes of lithium storage. Chinese Chemical Letters, 2024, 35(12): 109990-. doi: 10.1016/j.cclet.2024.109990

    18. [18]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    19. [19]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    20. [20]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

Metrics
  • PDF Downloads(18)
  • Abstract views(644)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return