Citation: Gang WANG, Zeng-Long GUO, Kang-Di NIU, Jun-Hao LIN. Defect-induced Surface and Interface Reconstruction in Novel Two-dimensional Materials Revealed by Low Voltage Scanning Transmission Electron Microscopy[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 401-414. doi: 10.14102/j.cnki.0254-5861.2011-2787 shu

Defect-induced Surface and Interface Reconstruction in Novel Two-dimensional Materials Revealed by Low Voltage Scanning Transmission Electron Microscopy

  • Corresponding author: Jun-Hao LIN, linjh@sustech.edu.cn
  • Received Date: 15 February 2020
    Accepted Date: 26 February 2020

    Fund Project: National Natural Science Foundation of China 11974156Guangdong International Science Collaboration Project 2019A050510001

Figures(5)

  • Two-dimensional (2D) materials attracted substantial attention due to their extraordinary physical properties resulting from the unique atomic thickness. 2D materials could be considered as material systems with flat surfaces at both sides, while the van der Waals gap is a natural out-of-plane interface between two monolayers. However, defects are inevitably presented and often cause significant surface and interface reconstruction, which modify the physical properties of the materials being investigated. In this review article, we reviewed the effort achieved in probing the defect structures and the reconstruction of surface and interface in novel 2D materials through aberration corrected low voltage scanning transmission electron microscopy (LVSTEM). The LVSTEM technique enables us to unveil the intrinsic atomic structure of defects atom-by-atom, and even directly visualize the dynamical reconstruction process with single atom precision. The effort in understanding the defect structures and their contributions in the surface and interface reconstructions in 2D materials shed light on the origin of their novel physical phenomenon, and also pave the way for defect engineering in future potential applications.
  • 加载中
    1. [1]

      Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures, Nature 2013, 499, 419–425.  doi: 10.1038/nature12385

    2. [2]

      Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-like two-dimensional materials, Chem. Rev. 2013, 113, 3766–3798.  doi: 10.1021/cr300263a

    3. [3]

      Zhang, H. Ultrathin two-dimensional nanomaterials, ACS Nano 2015, 9, 9451–9469.  doi: 10.1021/acsnano.5b05040

    4. [4]

      Shi, Y.; Li, H.; Li, L. J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques, Chem. Soc. Rev. 2015, 44, 2744–2756.  doi: 10.1039/C4CS00256C

    5. [5]

      Geng, D.; Yang, H. Y. Recent advances in growth of novel 2D materials: beyond graphene and transition metal dichalcogenides, Adv. Mater. 2018, 30, 1800865.  doi: 10.1002/adma.201800865

    6. [6]

      Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides, Chem. Soc. Rev. 2015, 44, 2702–2712.  doi: 10.1039/C5CS00151J

    7. [7]

      Mirõ, P.; Ghorbani-Asl, M.; Heine, T. Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides, Angew. Chemie-Int. Ed. 2014, 53, 3015–3018.  doi: 10.1002/anie.201309280

    8. [8]

      Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors, Nat. Nanotechnol. 2011, 6, 147–150.  doi: 10.1038/nnano.2010.279

    9. [9]

      Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano 2014, 8, 1102–1120.  doi: 10.1021/nn500064s

    10. [10]

      Li, H.; Wu, J.; Yin, Z.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and We2 nanosheets, Acc. Chem. Res. 2014, 47, 1067–1075.  doi: 10.1021/ar4002312

    11. [11]

      Tan, S. J. R.; Abdelwahab, I.; Chu, L.; Poh, S. M.; Liu, Y.; Lu, J.; Chen, W.; Loh, K. P. Quasi-monolayer black phosphorus with high mobility and air stability, Adv. Mater. 2018, 30, 1–8.

    12. [12]

      Xia, F.; Wang, H.; Hwang, J. C. M.; Neto, A. H. C.; Yang, L. Black phosphorus and its isoelectronic materials, Nat. Rev. Phys. 2019, 1, 306–317.  doi: 10.1038/s42254-019-0043-5

    13. [13]

      Lin, Y. C.; Komsa, H. P.; Yeh, C. H.; Björkman, T.; Liang, Z. Y.; Ho, C. H.; Huang, Y. S.; Chiu, P. W.; Krasheninnikov, A. V.; Suenaga, K. Single-layer ReS2: two-dimensional semiconductor with tunable in-plane anisotropy, ACS Nano 2015, 9, 11249–11257.  doi: 10.1021/acsnano.5b04851

    14. [14]

      Keyshar, K.; Gong, Y.; Ye, G.; Brunetto, G.; Zhou, W.; Cole, D. P.; Hackenberg, K.; He, Y.; Machado, L.; Kabbani, M.; Hart, A.; Li, B.; Galvao, D. S.; George A.; Vajtai, R.; Tiwary, C. S.; Ajayan, P. M. Chemical vapor deposition of monolayer rhenium disulfide (ReS2), Adv. Mater. 2015, 27, 4640–4648.  doi: 10.1002/adma.201501795

    15. [15]

      Aivazian, G.; Gong, Z.; Jones, A. M.; Chu, R. L.; Yan, J.; Mandrus, D. G.; Zhang, C.; Cobden, D.; Yao, W.; Xu, X. Magnetic control of valley pseudospin in monolayer WSe2, Nat. Phys. 2015, 11, 148–152.  doi: 10.1038/nphys3201

    16. [16]

      Zheng, L.; Zhou, J.; Shi, J.; Zeng, Q.; Chen, Y.; Niu, L.; Liu, F.; Yu, T.; Suenaga, K.; Liu, X.; Lin, J. InSe monolayer: synthesis, structure and ultra-high second-harmonic generation, 2D Mater. 2018, 5, 25019.  doi: 10.1088/2053-1583/aab390

    17. [17]

      Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 2013, 5, 263–275.  doi: 10.1038/nchem.1589

    18. [18]

      Geim, A. K. Graphene: Status and prospects, Science 2009, 324, 1530-1534.  doi: 10.1126/science.1158877

    19. [19]

      Fang, A.; Kroenlein, K.; Riccardi, D.; Smolyanitsky, A. Highly mechanosensitive ion channels from graphene-embedded grown ethers, Nat. Mater. 2018, 18, 76-81.

    20. [20]

      Gupta, A.; Rawal, T. B.; Neal, C. J.; Das, S.; Rahman, T. S.; Seal, S. Molybdenum disulfide for ultra-low detection of free radicals: electrochemical response and molecular modeling, 2D Mater. 2017, 4, 25077.  doi: 10.1088/2053-1583/aa636b

    21. [21]

      Prasai, D.; Tuberquia, J. C.; Harl, R. R.; Jennings, G. K.; Bolotin, K. I. Graphene: corrosion-inhibiting coating, ACS Nano 2012, 6, 1102–1108.  doi: 10.1021/nn203507y

    22. [22]

      Li, J.; Chen, M.; Cullen, D. A.; Hwang, S.; Wang, M.; Li, B.; Liu, K.; Karakalos, S.; Lucero, M.; Zhang, H.; Lei, C.; Xu, H.; Sterbinsky, G. E.; Feng, Z.; Su, D.; More, K. L.; Wang, G.; Wang, Z.; Wu, G. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells, Nat. Catal. 2018, 1, 935–945.  doi: 10.1038/s41929-018-0164-8

    23. [23]

      Luo, Y.; Zhang, S.; Pan, H.; Xiao, S.; Guo, Z.; Tang, L.; Khan, U.; Ding, B. F.; Li, M.; Cai, Z.; Zhao, Y.; Lv, W.; Feng, Q.; Zou, X.; Lin, J.; Cheng, H. M.; Liu, B. Unsaturated single atoms on monolayer transition metal dichalcogenides for ultrafast hydrogen evolution, ACS Nano 2019, 14, 767-776.

    24. [24]

      Lu, J. M.; Zheliuk, O.; Leermakers, I.; Yuan, N. F. Q.; Zeitler, U.; Law, K. T.; Ye, J. T. Evidence for two-dimensional ising superconductivity in gated MoS2, Science 2015, 350, 1353–1357.  doi: 10.1126/science.aab2277

    25. [25]

      Chatterjee, U.; Zhao, J.; Iavarone, M.; Di Capua, R.; Castellan, J. P.; Karapetrov, G.; Malliakas, C. D.; Kanatzidis, M. G.; Claus, H.; Ruff, J.; Weber, F.; van Wezel, J.; Campuzano, J. C.; Osborn, R.; Randeria, M.; Trivedi, N.; Norman, M. R.; Rosenkranz, S. Emergence of coherence in the charge-density wave state of 2H-NbSe2, Nat. Commun. 2015, 6, 6313.  doi: 10.1038/ncomms7313

    26. [26]

      Xi, X.; Zhao, L.; Wang, Z.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Strongly enhanced charge-density-wave rrder in monolayer NbSe2, Nat. Nanotechnol. 2015, 10, 765–769.  doi: 10.1038/nnano.2015.143

    27. [27]

      Soluyanov, A. A.; Gresch, D.; Wang, Z.; Wu, Q.; Troyer, M.; Dai, X.; Bernevig, B. A. Type-Ⅱ Weyl semimetals, Nature 2015, 527, 495–498.  doi: 10.1038/nature15768

    28. [28]

      Zhou, W.; Zou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide, Nano Lett. 2013, 13, 2615–2622.  doi: 10.1021/nl4007479

    29. [29]

      Rhodes, D.; Chae, S. H.; Ribeiro-Palau, R.; Hone, J. Disorder in van der Waals heterostructures of 2D materials, Nat. Mater. 2019, 18, 541–549.  doi: 10.1038/s41563-019-0366-8

    30. [30]

      Pennycook, S. J.; Nellist, P. D. Scanning transmission electron microscopy: imaging and analysis; Springer New York 2011.

    31. [31]

      Krivanek, O. L.; Chisholm, M. F.; Nicolosi, V.; Pennycook, T. J.; Corbin, G. J.; Dellby, N.; Murfitt, M. F.; Own, C. S.; Szilagyi, Z. S.; Oxley, M. P.; Pantelides, S. T.; Pennycook, S. J. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy, Nature 2010, 464, 571–574.  doi: 10.1038/nature08879

    32. [32]

      Novoselov, K. S. Electric field effect in atomically thin carbon films, Science 2004, 306, 666–669.  doi: 10.1126/science.1102896

    33. [33]

      Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 2009, 324, 1312–1314.  doi: 10.1126/science.1171245

    34. [34]

      Zhou, J.; Lin, J.; Huang, X.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H.; Lei, J.; Wu, D.; Liu, F.; Fu, Q.; Zeng, Q.; Hsu, C. H.; Yang, C.; Lu, L.; Yu, T.; Shen, Z.; Lin, H.; Yakobson, B. I.; Liu, Q.; Suenaga, K.; Liu, G.; Liu, Z. A library of atomically thin metal chalcogenides, Nature 2018, 556, 355–359.  doi: 10.1038/s41586-018-0008-3

    35. [35]

      Lin, Z.; Carvalho, B. R.; Kahn, E.; Lv, R.; Rao, R.; Terrones, H.; Pimenta, M. A.; Terrones, M. Defect engineering of two-dimensional transition metal dichalcogenides, 2D Mater. 2016, 3, 022002.  doi: 10.1088/2053-1583/3/2/022002

    36. [36]

      Van Der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide, Nat. Mater. 2013, 12, 554–561.  doi: 10.1038/nmat3633

    37. [37]

      Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets, Nature 2007, 446, 60–63.  doi: 10.1038/nature05545

    38. [38]

      Brivio, J.; Alexander, D. T. L.; Kis, A. Ripples and layers in ultrathin MoS2 membranes, Nano Lett. 2011, 11, 5148–5153.  doi: 10.1021/nl2022288

    39. [39]

      Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.; Yakobson, B. I.; Terrones, H.; Terrones, M.; Tay, B. K.; Lou, J.; Pantelides, S. T.; Liu, Z.; Zhou, W.; Ajayan, P. M. Vertical and in-plane heterostructures from WS2/MoS2 monolayers, Nat. Mater. 2014, 13, 1135–1142.  doi: 10.1038/nmat4091

    40. [40]

      Dong, R.; Zhang, T.; Feng, X. Interface-assisted synthesis of 2D materials: trend and challenges, Chem. Rev. 2018, 118, 6189–6235.  doi: 10.1021/acs.chemrev.8b00056

    41. [41]

      Hong, J.; Jin, C.; Yuan, J.; Zhang, Z. Atomic defects in two-dimensional materials: from single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis, Adv. Mater. 2017, 29, 1606434.  doi: 10.1002/adma.201606434

    42. [42]

      Dan, J.; Zhao, X.; Pennycook, S. J. A machine perspective of atomic defects in scanning transmission electron microscopy, InfoMat 2019, 1, 359–375.  doi: 10.1002/inf2.12026

    43. [43]

      Mendes, R. G.; Pang, J.; Bachmatiuk, A.; Ta, H. Q.; Zhao, L.; Gemming, T.; Fu, L.; Liu, Z.; Rümmeli, M. H. Electron-driven in situ transmission electron microscopy of 2D transition metal dichalcogenides and their 2D heterostructures, ACS Nano 2019, 13, 978-995.

    44. [44]

      Zhou, Y.; Song, E.; Zhou, J.; Lin, J.; Ma, R.; Wang, Y.; Qiu, W.; Shen, R.; Suenaga, K.; Liu, Q.; Wang, J.; Liu, Z.; Liu, J. Auto-optimizing hydrogen evolution catalytic activity of ReS2 through intrinsic charge engineering, ACS Nano 2018, 12, 4486–4493.  doi: 10.1021/acsnano.8b00693

    45. [45]

      Wang, S.; Robertson, A.; Warner, J. H. Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides, Chem. Soc. Rev. 2018, 47, 6764–6794.  doi: 10.1039/C8CS00236C

    46. [46]

      Susarla, S.; Hachtel, J. A.; Yang, X.; Kutana, A.; Apte, A.; Jin, Z.; Vajtai, R.; Idrobo, J. C.; Lou, J.; Yakobson, B. I.; Tiwary, C. S.; Ajayan, P. M. Thermally induced 2D alloy-heterostructure transformation in quaternary alloys, Adv. Mater. 2018, 30, 1–6.

    47. [47]

      Yu, P.; Lin, J.; Sun, L.; Le, Q. L.; Yu, X.; Gao, G.; Hsu, C. H.; Wu, D.; Chang, T. R.; Zeng, Q.; Liu, F.; Wang, Q. J.; Jeng, H. T.; Lin, H.; Trampert, A.; Shen, Z.; Suenaga, K.; Liu, Z. Metal-semiconductor phase-transition in WSe2(1-x)Te2x monolayer, Adv. Mater. 2017, 29, 1–8.

    48. [48]

      Li, P.; Cui, J.; Zhou, J.; Guo, D.; Zhao, Z.; Yi, J.; Fan, J.; Ji, Z.; Jing, X.; Qu, F.; Yang, C.; Lu, L.; Lin, J.; Liu, Z.; Liu, G. Phase transition and superconductivity enhancement in Se-substituted MoTe2 Thin Films, Adv. Mater. 2019, 31, 1–9.

    49. [49]

      Lin, J.; Zhou, J.; Zuluaga, S.; Yu, P.; Gu, M.; Liu, Z.; Pantelides, S. T.; Suenaga, K. Anisotropic ordering in 1T′ molybdenum and tungsten ditelluride layers alloyed with sulfur and selenium, ACS Nano 2018, 12, 894–901.  doi: 10.1021/acsnano.7b08782

    50. [50]

      Wen, W.; Lin, J.; Suenaga, K.; Guo, Y.; Zhu, Y.; Hsu, H. P.; Xie, L. Preferential S/Se occupation in an anisotropic ReS2(1-x)Se2x monolayer alloy, Nanoscale 2017, 9, 18275–18280.  doi: 10.1039/C7NR05289H

    51. [51]

      Shi, J.; Ma, D.; Han, G. F.; Zhang, Y.; Ji, Q.; Gao, T.; Sun, J.; Song, X.; Li, C.; Zhang, Y.; Lang, X. Y.; Zhang, Y.; Liu, Z. Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction, ACS Nano 2014, 8, 10196–10204.  doi: 10.1021/nn503211t

    52. [52]

      Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts, Science 2007, 317, 100–102.  doi: 10.1126/science.1141483

    53. [53]

      Ye, G.; Gong, Y.; Lin, J.; Li, B.; He, Y.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction, Nano Lett. 2016, 16, 1097–1103.  doi: 10.1021/acs.nanolett.5b04331

    54. [54]

      Lin, J.; Fang, W.; Zhou, W.; Lupini, A. R.; Idrobo, J. C.; Kong, J.; Pennycook, S. J.; Pantelides, S. T. AC/AB stacking boundaries in bilayer graphene, Nano Lett. 2013, 13, 3262–3268.  doi: 10.1021/nl4013979

    55. [55]

      Toh, C. T.; Zhang, H.; Lin, J.; Mayorov, A. S.; Wang, Y. P.; Orofeo, C. M.; Ferry, D. B.; Andersen, H.; Kakenov, N.; Guo, Z.; Abidi, I. H.; Sims, H.; Suenaga, K.; Pantelides, S. T.; Özyilmaz, B. Synthesis and properties of free-standing monolayer amorphous carbon, Nature 2020, 577, 199–203.  doi: 10.1038/s41586-019-1871-2

    56. [56]

      Li, M. Y.; Shi, Y.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H.; Chang, W. H.; Suenaga, K.; Li, L. J. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface, Science 2015, 349, 524–528.  doi: 10.1126/science.aab4097

    57. [57]

      Huang, C.; Wu, S.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors, Nat. Mater. 2014, 13, 1096–1101.  doi: 10.1038/nmat4064

    58. [58]

      Lin, J.; Cretu, O.; Zhou, W.; Suenaga, K.; Prasai, D.; Bolotin, K. I.; Cuong, N. T.; Otani, M.; Okada, S.; Lupini, A. R.; Idrobo, J. C.; Caudel, D.; Burger, A.; Ghimire, N.; Yan, J.; Mandrus, D. G.; Pennycook, S. J.; Pantelides, S. T. Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers, Nat. Nanotechnol. 2014, 9, 436–442.  doi: 10.1038/nnano.2014.81

    59. [59]

      Liu, X.; Xu, T.; Wu, X.; Zhang, Z.; Yu, J.; Qiu, H.; Hong, J. H.; Jin, C. H.; Li, J. X.; Wang, X. R.; Sun, L. T.; Guo, W. Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets, Nat. Commun. 2013, 4, 1–6.

    60. [60]

      Brehm, J. A.; Lin, J.; Zhou, J.; Sims, H.; Liu, Z.; Pantelides, S. T.; Suenaga, K. Electron-beam-induced synthesis of hexagonal 1H-MoSe2 from square β-FeSe decorated with Mo adatoms, Nano Lett. 2018, 18, 2016–2020.  doi: 10.1021/acs.nanolett.7b05457

    61. [61]

      Lin, J.; Zuluaga, S.; Yu, P.; Liu, Z.; Pantelides, S. T.; Suenaga, K. Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2, Phys. Rev. Lett. 2017, 119, 1–6.

    62. [62]

      Lin, J.; Pantelides, S. T.; Zhou, W. Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer, ACS Nano 2015, 9, 5189–5197.  doi: 10.1021/acsnano.5b00554

    63. [63]

      Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nano 2014, 9, 391–396.  doi: 10.1038/nnano.2014.64

    64. [64]

      Lin, J.; Zhang, Y.; Zhou, W.; Pantelides, S. T. Structural flexibility and alloying in ultrathin transition-metal chalcogenide nanowires, ACS Nano 2016, 10, 2782–2790.  doi: 10.1021/acsnano.5b07888

    65. [65]

      Mahjouri-Samani, M.; Lin, M. W.; Wang, K.; Lupini, A. R.; Lee, J.; Basile, L.; Boulesbaa, A.; Rouleau, C. M.; Puretzky, A. A.; Ivanov, I. N.; Xiao, K.; Yoon, M.; Geohegan, D. B. Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors, Nat. Commun. 2015, 6, 1–6.

    66. [66]

      Zuluaga, S.; Lin, J.; Suenaga, K.; Pantelides, S. T. Two-dimensional PdSe2-Pd2Se3 junctions can serve as nanowires, 2D Mater. 2018, 5, 035025.  doi: 10.1088/2053-1583/aac34c

    67. [67]

      Cretu, O.; Komsa, H. P.; Lehtinen, O.; Algara-Siller, G.; Kaiser, U.; Suenaga, K.; Krasheninnikov, A. V. Experimental observation of boron nitride chains, ACS Nano 2014, 8, 11950–11957.  doi: 10.1021/nn5046147

    68. [68]

      Kibsgaard, J.; Tuxen, A.; Levisen, M.; Lægsgaard, E.; Gemming, S.; Seifert, G.; Lauritsen, J. V; Besenbacher, F. Atomic-scale structure of Mo6S6 nanowires, Nano Lett. 2008, 8, 3928–3931.  doi: 10.1021/nl802384n

    69. [69]

      Murugan, P.; Kumar, V.; Kawazoe, Y.; Ota, N. Assembling nanowires from Mo-S clusters and effects of iodine doping on electronic structure, Nano Lett. 2007, 7, 2214–2219.  doi: 10.1021/nl0706547

    70. [70]

      Meden, A.; Kodre, A. Atomic and electronic structure of Mo6S9-xIx nanowires, Nanotechnology 2005, 16, 1578–1583.  doi: 10.1088/0957-4484/16/9/029

    71. [71]

      Uplaznik, M.; Bercic, B.; Strle, J.; Ploscaru, M. I.; Dvorsek, D.; Kuar, P.; Devetak, M.; Vengust, D.; Podobnik, B.; Mihailovic, D. D. Conductivity of single Mo6S9-XIx molecular nanowire bundles, Nanotechnology 2006, 17, 5142–5146.  doi: 10.1088/0957-4484/17/20/017

    72. [72]

      Zhou, J.; Liu, F.; Lin, J.; Huang, X.; Xia, J.; Zhang, B.; Zeng, Q.; Wang, H.; Zhu, C.; Niu, L.; Wang, X.; Fu, W.; Yu, P.; Chang, T. R.; Hsu, C. H.; Wu, D.; Jeng, H. T.; Huang, Y. Z.; Lin, H.; Shen, Z.; Yang, C.; Lu, L.; Suenaga, K.; Zhou, W.; Pantelides, S. T.; Liu, G.; Liu, Z. Large-area and high-quality 2D transition metal telluride, Adv. Mater. 2017, 29, 1603471.  doi: 10.1002/adma.201603471

    73. [73]

      Burch, K. S.; Mandrus, D.; Park, J. G. Magnetism in two-dimensional van der Waals materials, Nature 2018, 563, 47–52.  doi: 10.1038/s41586-018-0631-z

    74. [74]

      Fei, Z.; Huang, B.; Malinowski, P.; Wang, W.; Song, T.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X.; May, A. F.; et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2, Nat. Mater. 2018, 17, 778–782.  doi: 10.1038/s41563-018-0149-7

    75. [75]

      Bonilla, M.; Kolekar, S.; Ma, Y.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates, Nat. Nanotechnol. 2018, 13, 289–293.  doi: 10.1038/s41565-018-0063-9

  • 加载中
    1. [1]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    2. [2]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    3. [3]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    4. [4]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    5. [5]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    6. [6]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    7. [7]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    8. [8]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    9. [9]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    10. [10]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    11. [11]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    12. [12]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    13. [13]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    14. [14]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    15. [15]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    16. [16]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    17. [17]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    18. [18]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    19. [19]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    20. [20]

      Chao Ma Peng Guo Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235

Metrics
  • PDF Downloads(2)
  • Abstract views(292)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return