Citation: Jian LIU, Qing-He ZHAO, Lu-Yi YANG, Yuan LIN, Feng PAN. Applying Silver Tellurite to Optimize Ag/Si Contact Interface in Silicon Solar Cells[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 395-400. doi: 10.14102/j.cnki.0254-5861.2011-2779 shu

Applying Silver Tellurite to Optimize Ag/Si Contact Interface in Silicon Solar Cells

  • Corresponding author: Feng PAN, panfeng@pkusz.edu.cn
  • The firs two authors contriute equally to this work
  • Received Date: 13 February 2020
    Accepted Date: 19 February 2020

    Fund Project: Soft Science Research Project of Guangdong Province 2017B030301013Guangdong Innovative Team Program 2013N080Shenzhen Science and Technology Research Grant JSGG20170414163208757

Figures(3)

  • Nowadays, researches on developing new etching materials to optimize the Ag/Si contact interface in silicon solar cells (SSCs) are rare, which alleviates the further development of SSCs. In this study, silver tellurite (Ag2TeO3, monoclinic, P21/a(14)) is synthesized and developed as an excellent etching material in SSCs. The Ag2TeO3 displays a low starting temperature of etching Si3N4 of ~545 ℃, which is ~160 ℃ lower than that of PbO. Besides, by applying Ag2TeO3, conductive silver nanoparticles with a length of about 300~500 nm and a thickness of ~50 nm form in the Ag/Si contact interface, which effectively reduces the Ag-Si contact resistance, and leads to a high solar cell efficiency of ~18.4%. This study opens a new window for further enhancing the solar cell efficiency in the future.
  • 加载中
    1. [1]

      Kumara, P.; Aabdinb, Z.; Pfeffera, M.; Eibla, O. High-efficiency, single-crystalline, p- and n-type Si solar cells: microstructure and chemical analysis of the glass layer. Sol. Energy Mat. Sol. C 2018, 178, 52–64.  doi: 10.1016/j.solmat.2018.01.001

    2. [2]

      Corsin, B.; Andres, C.; Stefaan, D. High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ. Sci. 2016, 9, 1552–1576.  doi: 10.1039/C5EE03380B

    3. [3]

      Chung, B.; Cho, S.; Chun, J.; Kim, Y.; Okamoto, K.; Huh, J. Influence of oxygen on Ag ionization in molten lead borosilicate glass during screen-printed Ag contact formation for Si solar cells. Electrochimica Acta 2013, 106, 333–341.  doi: 10.1016/j.electacta.2013.05.109

    4. [4]

      Schroder, D.; Meier, D. Solar cell contact resistance-a review. IEEE. Tran. EL. 1984, 5, 637–647.

    5. [5]

      Ballif, C.; Huljić, G.; Willeke, H.; Wyser, A. Silver thick-film contacts on highly doped n-type silicon emitters: structural and electronic properties of the interface. Appl. Phys. Lett. 2003, 82, 1878–1880.  doi: 10.1063/1.1562338

    6. [6]

      Xiong, S.; Li, Y.; Liu, C.; Yuan, X.; Tong, H.; Yang, Y.; Ye, X.; Wang, X.; Luo, L. Rapid and accurate characterization of silver-paste metallization on crystalline silicon solar cells by contact-end voltage measurement. AIP Advances 2018, 8, 095225.  doi: 10.1063/1.5038127

    7. [7]

      Lin, C.; Tsai, S.; Hsu, S.; Hsieh, M. Investigation of Ag-bulk/glassy-phase/Si heterostructures of printed Ag contacts on crystalline Si solar cells. Sol. Energy Mat. Sol. C 2008, 92, 1011–1015.  doi: 10.1016/j.solmat.2008.02.032

    8. [8]

      Cheng, L.; Liang, L.; Li, L. Nano-Ag colloids assisted tunneling mechanism for current conduction in front contact of crystalline Si solar cells. 2009 34th IEEE. PVSC 2009, 002345–002348

    9. [9]

      Carroll, A. Screen printed metal contacts to Si solar cells – formation and synergistic improvements. 2013 IEEE 39th PVSC 2013, 3435–3440.

    10. [10]

      Liang, L.; Li, Z.; Cheng, L.; Takeda, N.; Carroll, A. Microstructural characterization and current conduction mechanisms of front-side contact of n-type crystalline Si solar cells with Ag/Al pastes. J. Appl. Phys. 2015, 117, 215102.  doi: 10.1063/1.4921544

    11. [11]

      Burrows, M.; Meisel, A.; Balakrishnan, D.; Tran, A.; Inns D.; Kim, E.; Carroll, A.; Mikeska, K. Front-side Ag contacts enabling superior recombination and fine-line performance. 2013 39th IEEE. PVSC 2013, 2171–2175.

    12. [12]

      Li, Z.; Mikeska, K.; Liang, L.; Meisel, A.; Scardera, G.; Cheng, L.; VerNooy, P.; Lewittes, M.; Lu, M.; Gao, F.; Zhang, L.; Carroll, A.; Jiang, C. Microstructural characterization of front-side Ag contact of crystalline Si solar cells with lightly doped emitter. 2012 38th IEEE. PVSC 2012, 002196–002199.

    13. [13]

      Li, Z.; Mikeska, R.; VerNooy, P.; Liang, L. Microstructural investigation of new thick-film paste flux for contacting silicon solar cells. 2011 37th IEEE. PVSC 2011, 003659–003662.

    14. [14]

      Li, Z.; Liang, L.; Cheng, L. Electron microscopy study of front-side Ag contact in crystalline Si solar cells. J. Appl. Phys. 2009, 105, 066102.  doi: 10.1063/1.3086663

    15. [15]

      Li, Z.; Liang, L.; Ionkin, A.; Fish, B.; Lewittes, M.; Cheng, L.; Mikeska, K. Microstructural comparison of silicon solar cells' front-side Ag contact and the evolution of current conduction mechanisms. J. Appl. Phys. 2011, 110, 074304.  doi: 10.1063/1.3642956

    16. [16]

      Zhou, Y.; Yang, Y.; Huang, F.; Ren, J.; Yuan, S.; Chen, G. Characterization of new tellurite glasses and crystalline phases in the TeO2-PbO-Bi2O3-B2O3 system. J. Non-Cryst. Solids 2014, 386, 90–94.  doi: 10.1016/j.jnoncrysol.2013.11.037

    17. [17]

      Cai, X.; Teng, Y.; Wu, L.; Chan, X. Characterization of TeO2 based glass frits and morphology to their silver films. J. Mater. Sci: Mater. El. 2017, 28, 18429–18436.  doi: 10.1007/s10854-017-7789-2

    18. [18]

      Qin, J.; Zhang, W.; Bai, S.; Liu, Z. Effect of Pb-Te-O glasseson Agthick-film contactincrystallinesilicon solar cells. Sol. Energy Mat. Sol. C 2016, 144, 256–263.  doi: 10.1016/j.solmat.2015.08.025

    19. [19]

      Zheng, G.; Tai, Y.; Wang, H.; Bai, J. Effect of the Pb-Te-B-O system glass frits in the front contact paste on the conversion efficiency of crystalline silicon solar cells. J. Mater. Sci: Mater. El. 2014, 25, 3779–3786.  doi: 10.1007/s10854-014-2089-6

    20. [20]

      Emique, C.; Sara, O.; Dominik, R.; Joachim, G.; Radovan, K.; Daniel, R.; Gunnar, S. Impact of Si surface topography on the glass layer resulting from screen printed Ag-paste solar cell contacts. 2012, 38th IEEE. PVSC 2012, 000204–000208.

    21. [21]

      Pi, X.; Cao, X.; Chen, J.; Zhang, L.; Fu, Z.; Wang, L.; Zhang, Q. Improved Ag-Si interface performance for Si solar cells using a novel Te-based glass and recrystallization process of Ag. Rare Metals 2014, 1–6.

    22. [22]

      Shizuharu, W.; Takayuki, K.; Takashi, O. Influence of tellurite glass on reaction between Si3N4 anti-reflection coating film and Ag paste for electrodes in Si solar cells. J. Ceram. Soci. JPN 2016, 124, 218–222.  doi: 10.2109/jcersj2.15241

    23. [23]

      VerNooy, P.; Torardi, C.; Li, Z.; Lewittes, M.; Getty, R.; Mikeska, K.; Ionkin, A.; Cheng, L.; Wu, A.; Laughlin, B.; Laudisio, G. High-efficiency lead-free silver pastes for crystalline silicon solar cells. 2012, 38th IEEE. PVSC 2012, 002271–002273.

    24. [24]

      Eisele, S.; Roder, T.; Ametowobla, M.; Bilger, G.; Werner, J. H. 18.9% efficient silicon solar cell with laser doped emitter. 2009, 34th IEEE. PVSC 2009, 000883–000885.

    25. [25]

      Sharma, L.; Batra, S. Characterization and thermoanalytical investigations of silver tellurite. J. Therm. Anal. 1989, 35, 2199–2212.  doi: 10.1007/BF01911884

  • 加载中
    1. [1]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    2. [2]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    3. [3]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    4. [4]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    5. [5]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    6. [6]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    7. [7]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    8. [8]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    9. [9]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    10. [10]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    11. [11]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    12. [12]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    13. [13]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    14. [14]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    15. [15]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    16. [16]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    17. [17]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    18. [18]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    19. [19]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    20. [20]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

Metrics
  • PDF Downloads(3)
  • Abstract views(187)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return